Monoclonal Antibody Fragments for Targeting Therapeutics to Growth Plate Cartilage

A child's growth is dependent on the proper functioning of the growth plate, a specialized cartilage structure located at the ends of long bones and within the vertebrae. The primary function of the growth plate is to generate new cartilage, which is then converted into bone tissue and results in the lengthening of bones. Failure of the growth plate to function properly can result in short stature or sometimes a skeletal dysplasia, such as achondroplasia, in which the bones are not just short but also malformed.

Machine Learning and/or Neural Networks to Validate Stem Cells and Their Derivatives for Use in Cell Therapy, Drug Delivery, and Diagnostics

Many biological and clinical procedures require functional validation of a desired cell type. Current techniques to validate rely on various assays and methods, such as staining with dyes, antibodies, and nucleic acid probes, to assess stem cell health, death, proliferation, and functionality. These techniques potentially destroy stem cells and risk contaminating cells and cultures by exposing them to the environment; they are low-throughput and difficult to scale-up.

Quantitative In Vivo Methods for Measuring Brain Networks

The pattern or latency connectome was hypothesized to change in physiological development and disease.  For example, in amyotrophic lateral sclerosis (ALS), large diameter axons are damaged selectively – while in autism, small-diameter axons may be over-expressed. These anatomical changes are expected to alter the latency connectome or pattern of delays of information transmission between different gray matter areas involved in salient brain networks. 

Method for Reproducible Differentiation of Clinical Grade Retinal Pigment Epithelium Cells

The retinal pigment epithelium (RPE) is a cell monolayer with specialized functions crucial to maintaining the metabolic environment and chemistry of the sub-retinal and choroidal layers in the eye. Damage or disease causing RPE cell loss leads to progressive photoreceptor damage and impaired vision. Loss of RPE is observed in many of the most prevalent cases of vision loss, including age related macular degeneration (AMD) and Best disease.

Cancer Therapeutic Based on T Cell Receptors Designed to Regiospecifically Release Interleukin-12

Adoptive immunotherapy is a promising new approach to cancer treatment that engineers an individual''s innate and adaptive immune system to fight against specific diseases, including cancer with fewer side-effects and more specific anti-tumor activity in individual patients. T cell receptors (TCRs) and Chimeric Antigen Receptors (CARs) are proteins that recognize antigens in the context of infected or transformed cells and activate T cells to mediate an immune response to destroy abnormal cells.

Engineered Biological Pacemakers

The National Institute on Aging's (NIA) Cellular Biophysics Section is seeking statements of capability or interest from parties interested in collaborative research to further develop, evaluate, or commercialize biological pacemakers.

A common symptom of many heart diseases is an abnormal heart rhythm or arrhythmia. While effectively improving the lives of many patients, implantable pacemakers have significant limitations such as limited power sources, risk of infections, potential for interference from other devices, and absence of autonomic rate modulation.

GATA-3 Reporter Plasmids for Revealing Underlying Mechanisms in Breast Cancer

GATA-3 is a transcription factor that is highly expressed in normal cells of the mammary luminal epithelium. GATA-3 plays a regulatory role in determining the fate of cells in the mammary gland. Disruption of GATA-3 expression leads to defects in the development of mammary cells, including an inability to differentiate properly into the correct cell type. GATA-3 function is also disrupted in various breast cancer models indicating that GATA-3 has tumor suppressive properties in normal cells.