Cancer Vaccines against POTE for Treating Solid Tumors

POTE is a novel tumor antigen expressed in a variety of cancers including breast, prostate, colon, lung, ovary, and pancreas cancers.  POTE has limited expression in normal tissues and therefore a specific target for cancer treatments, including immunotherapy.  The researchers seek statements of capability or interest from parties interested in collaborative research to further develop, evaluate, or commercialize immunogenic peptides. 

Use of the TP5 Peptide for the Treatment of Cancer

GBM is the most aggressive form of brain cancer. The current standard of care against GBM is a combination of surgery, chemotherapy and radiotherapy. However, after standard treatment, the cancer usually recurs – emphasizing a need for new targets and better alternatives. A promising target is cyclin-dependent kinase 5 (CDK5), the hyperactivity of which has been shown to have a role in cancer progression. 

3D Vascularized Human Ocular Tissue for Cell Therapy and Drug Discovery

Degeneration of retinal tissues occurs in many ocular disorders resulting in the loss of vision. Dysfunction and/or loss of Retinal Pigment Epithelium Cells (RPE) and disruption of the associated blood retinal barrier (BRB) tissue structures are linked with many ocular diseases and conditions including: age-related macular degeneration (AMD), Best disease, and retinitis pigmentosa. Engineered tissue structures that are able to replicate the function of lost BRB structures may restore lost vision and provide insight into new treatments and mechanisms of the underlying conditions. 

Oxynitidine Derivatives Useful as Inhibitors of Topoisomerase IB (TOP1) and Tyrosyl-DNA Phosphodiesterase 1 (TDP1) for Treating Cancer

Topoisomerase 1B (TOP1) is an enzyme that relieves the torsional strain in DNA. To relieve the torsional strain, TOP1B cleaves one strand of DNA and forms a transient complex called a TOP1-DNA covalent cleavage complex (TOP1cc). TOP1 inhibitors – such as camptothecin – stabilize the TOP1cc and prevent relegation of the broken DNA which, when encountered by replication and transcription machinery, triggers cell death. The DNA damage generated by the TOP1cc can be repaired by several pathways, including tyrosyl-DNA phosphodiesterase 1 (TDP1) pathway. 

Module to Freeze and Store Frozen Tissue

Tissue obtained for both clinical and research purposes is routinely frozen, commonly in Optimal Cutting Temperature (OCT), an embedding media, for eventual downstream analysis, commonly including sectioning on a cryostat. Though OCT is the standard compound used for freezing, there is no standard freezing protocol. Thus, current methods of handling, labeling, and storing OCT-embedded tissue vary widely, and specimens are often damaged or degraded due to undesirable temperature fluctuations during handling and freezing.

Multifunctional RNA Nanoparticles as Cancer and HIV Therapeutics

The promise of RNA interference based therapeutics is made evident by the recent surge of biotechnological drug companies that pursue such therapies and their progression into human clinical trials. The present invention discloses novel RNA  and RNA/DNA nanoparticles including  multiple siRNAs, RNA aptamers, fluorescent dyes, and proteins. These RNA nanoparticles are useful for various nanotechnological applications.

Use of Replicators in Gene Therapy

Gene therapies offer promising prospects of treating a wide variety of human diseases. In one method, a gene therapy vector can be utilized to deliver an unmutated copy of a gene, called a transgene, to replace a mutated gene in order to treat the genetic disorder. However, lack of expression of a therapeutic transgene and uncontrolled gene silencing are still major obstacles for safety and efficacy of these gene therapy interventions.