Tethered Interleukin-15 (IL-15)/IL-21 to Enhance T Cells for Cellular Therapy

Interleukin-15 (IL-15) and IL-21 have been reported to support the function of anti-tumor T cells.  However, their use in the clinic has been constrained, in part, by dose-limiting toxicity and the need for repeated administration.  To overcome these limitations, researchers in the National Cancer Institute (NCI) Experimental Transplantation and Immunology Branch (ETIB) have developed synthetic IL-15 and IL-21 molecules for autocrine expression by the engineered therapeutic T cel

A Rapid Method of Isolating Neoantigen-specific T Cell Receptor Sequences

Tumors can develop unique genetic mutations which are specific to an individual patient. Some of these mutations are immunogenic; giving rise to autologous T cells which are tumor-reactive. Once isolated and sequenced, these neoantigen-specific TCRs can form the basis of effective adoptive cell therapy cancer treatment regimens; however, current methods of isolation are inefficient. Moreover, the process is technically challenging due to TCR sequence diversity and the need to correctly pair the a and b chain of each receptor.

Multi-Foci Sonications For Hyperthermia Treatments Using Magnetic Resource-Guided High-Intensity Focused Ultrasound (MR-HIFU)

Hyperthermia has been used extensively and successfully in the treatment of solid tumors. For accessible solid tumors with impressive efficacy not amenable to surgery, ablative hyperthermia (>55°C for 20 s to 15 min) has been used as a definitive treatment. By contrast, for both radiotherapy and chemotherapy, mild hyperthermia (40-45°C for up to 1 hour) has been shown useful as an adjuvant.

Methods of Producing Effective T-cell Populations Using Akt Inhibitors

Adoptive cell therapy (ACT) uses cancer reactive T-cells to effectively treat patients. However, several obstacles inhibit the successful use of ACT for cancer treatment.  Current approaches for the expansion of T-cells may produce T-cells with a terminally differentiated phenotype that is associated with diminished anti-tumor activity and poor capacity for long-term persistence. Thus, there is a need for improved methods of obtaining an isolated population of effective T-cells for ACT. 

Reporter Assay for Detection and Quantitation of Replication-Competent Gammaretrovirus

Gammaretroviral vectors were the first viral gene-therapy vectors to enter clinical trials and remain in use. One potential hazard associated with the use of such vectors is the presence of replication-competent retroviruses (RCR) in the vector preparations – either as a result of: 1) recombination events between the plasmids used for vector production, 2) interactions between the plasmids and endogenous retroviral sequences in the packaging cell lines, or 3) as a result of contamination in the laboratory.

Efficacious Fluorinated Cytidine Analog Cancer Therapeutic With Low Toxicity In Animal Studies

Cytidine analogs remain an area of active drug discovery and development, with five FDA approved drugs for the treatment of acute myeloid leukemia (AML). Two of these drugs, azacitidine (Vidaza®) and decitabine (Dacogen®), which were approved for myelodysplastic syndromes in 2004 and 2006, respectively, inhibit the DNA maintenance methyltransferase DNMT1. Because of the general toxicity of azacitidines, other nucleoside analogs are favored as therapeutics.

Methods of Producing Thymic Emigrants from Induced Pluripotent Stem Cells

Hematopoietic and pluripotent stem cells can be differentiated into T cells with potential clinical utility. Current approaches for in vitro T cell production rely on Notch signaling and artificial mimicry of thymic selection. However, these approaches result in unconventional or phenotypically aberrant T cells; which may lead to unpredictable behavior in clinical use. Thus, there exists a need for improved methods of generating conventional T cells in vitro from stem cells.
 

Self-Assembling Nanoparticles Composed of Transmembrane Peptides and Their Application for Specific Intra-Tumor Delivery of Anti-Cancer Drugs

Peptides corresponding to transmembrane domains of a number of integral proteins were discovered to spontaneously self-assemble in aqueous solutions into stable and remarkably uniform nanoparticles.  Researchers at the NCI’s Cancer and Inflammation Program have developed fully synthetic, peptide-based, virus-like nanoparticles capable of delivering cytotoxic, radioactive, and imaging agents. 

Structure and function of tumor-target self-assembling particles:

Therapeutic Management of Menkes Disease and Related Copper Transport Disorders

The only currently available treatment for Menkes disease, subcutaneous copper histidinate injections, is successful only in patients with ATP7A gene mutations that do not completely corrupt ATP7A copper transport function (estimated 20-25% of affected patients) and when started at a very early age (first month of life). The combination of viral gene therapy with copper injections provides working copies of the ATP7A copper transporter into the brain, together with a source of the substrate (copper)  needed for proper brain growth and clinical neurodevelopment.