Discovery of Proteasome Inhibitors to Target PMP22 Gene Expression for the Treatment of Charcot-Marie-Tooth Disease Type 1A

This technology includes the use of proteasome inhibitors, such as Bortezomib, for the treatment of the most prevalent form of Charcot-Marie-Tooth disease type 1A (CMT1A). Duplication of the peripheral myelin protein 22 (PMP22) gene, normally involved in myelination of the peripheral nervous system, is the causative agent in most forms of CMT1A. A drug discovery program was initiated and found that proteasome inhibitors can be used to target PMP22.

Creation and Use of 12-LO inhibitors (4-((2-hydroxy-3-methoxybenzyl)amino)benzenesulfonamide derivatives) for the Treatment of Diabetes and Large Platelet-Derived Clots

This technology includes the discovery and use of novel selective 12-LO (lipoxygenase) inhibitors, 4-((2-hydroxy-3-methoxybenzyl)amino)benzenesulfonamide derivatives, for attenuating large clots and for the treatment of Type 1/2 diabetes. A 12-LO inhibitor could be a potent intracellular approach to block platelets from forming large clots in response to vessel injury or activation of the coagulation pathway, either due to diabetes and/or cardiovascular disease. Blocking clot formation can significantly decrease the occurrence of myocardial infarction and death.

SARS-CoV-2 Neutralizing Antibodies and Synthetic Nanobody Library Using a Humanized Llama Framework Region

NCATS has developed a highly diverse synthetic library that will allow for the rapid identification of novel nanobodies that bind to a wide arrange of target antigens. The humanized framework used to construct the library will facilitate the transition of lead candidates into patient studies. Several highly potent SARS-CoV-2 nanobodies (antibodies) have been identified and are available for further development.

NCATS is actively seeking licensing for the 1) a synthetic library and 2) the potent neutralizing antibodies with activity against SARS-CoV-2.

First-in-class Small Molecule Agonists of the Insulin-like (INSL3) Peptide Receptor RXFP2 and Uses in Bone Disorders and Fertility

Recent studies have identified the G-protein-coupled receptor (GPCR) for insulin-like 3 peptide (INSL3), relaxin family peptide receptor 2 (RXFP2), as an attractive target for the treatment of bone diseases such as osteoporosis and rare bone diseases such as osteogenesis imperfecta. Currently, the most effective available treatment for osteoporosis is an expensive hormone therapy that requires daily injections. A stable, orally deliverable drug is a much more desirable alternative. Our RXFP2 agonists perform as well as the natural ligand INSL3 in cellular assays.

Functional Brain Region-Specific Neural Spheroids for Modeling Neurological Diseases and Therapeutics Screening

3D spheroids have emerged as powerful drug discovery tools given their high-throughput screening (HTS) compatibility. The present invention presents a method for generating functional neural spheroids with differentiated human induced pluripotent stem cell (hiPSC)-derived neurons and astrocytes at cell type compositions mimicking specific regions of the human brain.

Mouse Model of Cobalamin A (cblA) Class Isolated Methylmalonic Acidemia (MMA) to Study New Therapies

Isolated Methylmalonic Acidemia (MMA) comprises a relatively common and heterogeneous group of inborn errors of metabolism. Most affected individuals display severe multisystemic disease characterized by metabolic instability, chronic renal disease, and neurological complications. Patients with the cobalamin A (cblA) subtype of MMA can have variable presentations, spanning the full spectrum of MMA associated symptoms and pathology, yet always harbor an element of clinical and biochemical responsiveness to injectable vitamin B12.

Aberrant Post-translational Modifications (PTMs) in Methyl- and Propionic Acidemia and the Construction of a Novel Sirtuin (SIRT) Gene to Metabolize PTMs

Isolated Methylmalonic Acidemia (MMA) and the related disorder Propionic Acidemia (PA) comprise a relatively common and heterogeneous group of inborn errors of metabolism. NHGRI scientist discovered that in isolated MMA, a novel inhibitory PTM, methylmalonyllysine, is generated and inactivates protein targets through the failure of SIRT-mediated deacylation, and identified a series of antibodies for PTM specificity.

High Concentration Methylcobalamin (Me-Cbl) or Combination of Methyl- and Hydroxocobalamin (Me/OH-Cbl) for the Treatment of Cobalamin C Deficiency and Related Disorders

Cobalamin C deficiency (cblC), caused by mutations in MMACHC, is the most common inborn error of intracellular vitamin B12 metabolism. NHGRI scientist have generated a number of Mmachc knockout mouse models. The cblC mice present with early lethality, recapitulate the neurological phenotype seen in patients, and have enabled proof of concept testing with traditional hydroxocobalamin formulations and doses. The scientist have also developed a novel combination of hydroxo- and methylcobalamin, having superior performance to traditional hydroxocobalamin only treatment.

Mmut p.G715v/p.G71 Knock-ln Methylmalonyl-CoA Mutase (Mmut) Allele Mouse Models for the Study of Methylmalonic Acidemia (MMA)

Isolated Methylmalonic Acidemia (MMA) comprises a relatively common and heterogeneous group of inborn errors of metabolism. In order to create mouse models of MMA to resemble the pathogenic mutations seen in patients, the NHGRI scientist used genome editing to generate new mutants of Mmut allele -p.G715V. This allele recapitulates a missense mutation seen in multiple patients with the disorder. Of note and emphasis is the fact that there are no transgene cassettes or other alternations to the Mmut locus in these new mouse models.

Mmut P.Pro207_Lysl10del/P.Pro207_Lysl10del Knock-In Methylmalonyl-CoA Mutase (Mmut) Allele Mouse Models for the Study of Methylmalonic Acidemia (MMA)

Isolated Methylmalonic Acidemia (MMA) comprises a relatively common and heterogeneous group of inborn errors of metabolism. In order to create mouse models of MMA to resemble the pathogenic mutations seen in patients, the NHGRI scientist used genome editing to generate new mutants of the Mmut allele -p.Pro207 _Lys210del. In order to create mouse models of MMA to resemble the pathogenic mutations seen in patients, the NHGRI scientist used genome editing to generate new mutants of Mmut allele -p.Pro207 _Lys210del. This allele recapitulates a 12-nucleotide deletion in exon 3 of Mmut.