Computer Controlled Aerosol Generator with Multi-Walled Carbon Nanotube Inhalation Testing Capabilities

This invention pertains to a CDC developed sonic aerosol generator that provides a controllable, stable concentration of particulate aerosol over a long period of time for aerosol exposure studies. Specifically, in situ testing data indicate uniform aerosol stability can be maintainable for greater than 30 hours at concentrations of 15 mg/m3 or more. Additionally, the technology was specifically developed for, and validated in, animal studies assessing exposure to airborne multi-walled carbon nanotubes (MWCNT).

Human Influenza Virus Real-time RT-PCR: Detection and Discrimination of Influenza A (H3N2) Variant from Seasonal Influenza A (H3N2) Viruses, Including H3v and Seasonal H3 Assays

This invention relates to methods of rapidly detecting influenza, including differentiating between type and subtype. CDC researchers have developed a rapid, accurate, real-time RT-PCR assay that has several advantages over culture and serological tests, which require 5 to 14 days for completion; this assay can also be easily implemented in kit form. To date, hundreds of human cases of infection with the H3N2 variant virus have been confirmed.

Dengue Vaccines: Tools for Redirecting the Immune Response for Safe, Efficacious Dengue Vaccination

This CDC-developed invention relates to dengue vaccines that have been specifically developed for improved efficacy and directed immune response to avoid antibody-dependent enhancement (ADE) safety issues that, theoretically, may be associated with dengue vaccines and vaccinations. Dengue viral infection typically causes a debilitating but non-lethal illness in hosts.

Human iPSC-Derived Mesodermal Precursor Cells and Differentiated Cells

Cells, cell culture methods, and cell culture media compositions useful for producing and maintaining iPSC-derived cell lines that are of higher purity and maintain cell type integrity better than current iPSC-derived cell lines are disclosed. Human induced pluripotent stem cells (hiPSCs) can be generated by reprogramming somatic cells by the expression of four transcription factors. The hiPSCs exhibit similar properties to human embryonic stem cells, including the ability to self-renew and differentiate into all three embryonic germ layers: ectoderm, endoderm, or mesoderm.

Novel Small Molecule Antimalarials for Elimination of Malaria Transmission

The transmission of malaria begins with injection of sporozoites into a human from the bite of a female anopheles mosquito, which initiates the malarial life cycle in humans. When a mosquito bites an infected human, the ingested male and female malaria gametocytes fuse to form a zygote that eventually becomes an oocyst. Each oocyst produces thousands of sporozoites which migrate to the mosquito salivary glands, ready to infect a new human host.

Compositions for Modification of Genomic DNA and Exogenous Gene Expression

A novel method of targeted insertion of transgenes at CLYBL locus directly in human cells is disclosed. Also, methods and compositions for increasing targeted insertion of a transgene into a specific location within the cell or increasing the frequency of gene modification in a targeted locus are disclosed. Genome modification by precise gene targeting at specific sequence/locus has great advantages over conventional transient expression or random integration methodologies and, therefore, has tremendous therapeutic potential.

Engineering Neural Stem Cells Using Homologous Recombination

Methods for modifying the genome of a Neural Stem Cell (NSC) are disclosed. Also, methods for differentiating NSCs into neurons and glia are described. NSCs are multipotent, self-renewing cells found in the central nervous system, capable of differentiating into neurons and glia. NSCs can be generated efficiently from pluripotent stem cells (PSCs) and have the capacity to differentiate into any neuronal or glial cell type of the central nervous system.

Role of Novel Hepatitis Delta Virus Variant in Sjogren’s Syndrome

Sjögren’s is a chronic autoimmune disease characterized by dry mouth and eyes, fatigue, and musculoskeletal pain resulting from the attack of the moisture-producing glands by the body’s own white blood cells. The subject invention is based on the discovery of an association between infection by a novel clade 1 variant of hepatitis delta virus (HDV) and primary Sjögren’s syndrome.

T24 Antigen for Diagnosing or Treating Taenia solium Cysticercosis

In order to develop a simple detection assay for field use, CDC researchers cloned and sequenced the Taenia solium T24 diagnostic protein. The T24 sequences can be used to detect and diagnose T. solium infection or can be formulated into a pharmaceutical composition. T. solium is a species of tapeworm. Intestinal infection with T. solium is referred to as taeniasis. Many taeniasis infections are asymptomatic but may be characterized by insomnia, anorexia, abdominal pain and weight loss. Cysticercosis infection, which can be fatal, may develop if T.

Peptide Vaccines Against Group A Streptococci

This invention relates to synthetic immunoreactive peptides, which are portions of the M proteins of the most prevalent Group A Streptococcus (GAS) serotypes in the United States. These peptides may be useful in development of a flexible, multivalent GAS vaccine. They can be recognized by M type-specific antibodies and are capable of eliciting functional opsonic antibodies. Additionally, the peptides or isolated antibodies raised in response to the peptides may be useful for GAS diagnostics.