Device for Selective Partitioning of Frozen Cellular Products

Cryopreservation using liquid nitrogen frozen polyvinyl bags allows for storing cellular materials for extended periods while maintaining their activity and viability. Such bags are commonly used in the clinic to store blood products including blood cells, plasma, hematopoietic stem cells, umbilical cord blood for future uses including transplantation. These materials, typically obtained in limited quantities, may be of great therapeutic value, as is the case of stem cells or cord blood derived cells which can be used to potentially treat a number of diseases.

Methods to Increase Stability of Recombinant Vaccinia-Vectored Vaccines and Increase Expression of a Foreign Gene Inserted in Such Vaccines

The technology offered for licensing is in the field of vaccinia-based recombinant vaccines. In particular the invention relates to methods of stabilizing the recombinant virus, thus resulting in efficient production of the vaccine and efficient expression of the inserted gene. Stabilization of the recombinant virus is achieved by the insertion of the exogenous gene into an intergenic region (IGR) of the viral genome (i.e. Modified Vaccinia Ankara, MVA), where the IGR is flanked by open reading frames of conserved poxvirus genes.

Caspase Inhibitors Useful for the Study of Autoimmune or Inflammatory Diseases

Novel and potent caspase 1 inhibitors are available for licensing. In particular, this technology discloses potent and selective caspase 1 inhibitors that target the active site of the enzyme. Caspase 1 is known to play a pro-inflammatory role in numerous autoimmune and inflammatory diseases and therefore represents an excellent target for treatment of a broad range of diseases, including but not limited to Huntington's, amyotrophic lateral sclerosis, ischemia, rheumatoid arthritis, osteoarthritis, inflammatory bowel disease, and sepsis.

Novel Antigen for Use as Vaccine Against Nematode Infection

This invention describes a new vaccine against Strongyoides stercoralis, which establishes a parasitic infection that affects an estimated 100-200 million people worldwide. The potential for fatal disease associated with S. stercoralis infection and the difficulty in treating hyperinfection underscores the need for prophylactic vaccines against the disease. This vaccine uses S. stercoralis immunoreactive antigen (SsIR); a novel antigen capable of providing 70-90 % protection for mice immunized with the antigen.

N-Methanocarba Adenosine Derivatives and Their Dendrimer Conjugates as A3 Receptor Agonists

This technology relates to specific (N)-methanocarba adenine nucleosides that have been developed and dendrimers that connect these compounds to create molecules with multiple targets. Dendrimers are essentially repeated molecular branches presenting the core receptor-binding molecules. The compounds synthesized function as agonists and antagonists of a receptor of the G-protein coupled receptor (GPCR) superfamily.

Method of Producing Immortalized Primary Human Keratinocytes for HPV Investigation, Testing of Therapeutics, and Skin Graft Generation

One of the major limitations of using cultured keratinocytes for research studies is that primary keratinocytes senesce after a few passages. Keratinocytes from specific anatomical sites are also difficult to culture. Scientists at the NIH have demonstrated that primary keratinocytes, from several anatomical sites, when treated with a small-molecule inhibitor of the ROCK protein maintain a proliferative state and become immortal without genetic modification to the cells.

Phantasmidine, a Nicotinic Receptor Agonist for the Treatment of Addiction and Neurological Disorders

The inventors have isolated and characterized an alkaloid, phantasmidine, from the skin of the Ecuadoran poison frog E. anthonyi. Phantasmidine is selective for beta4-containing receptor subtypes, unlike many nicotinic receptor agonists currently in development, which target beta2-containing receptor subtypes.

Prevention and Treatment of Herpes Virus Infection by Inhibition of the JMJD2 Family of Histone Demethylases

Investigators at the NIH have discovered a potential means for preventing or treating a herpes virus infection by inhibiting the activity of the host cell’s histone demethylases. When herpesviruses enter a cell, they are inactivated by cellular defense mechanisms that wrap the viral genome in repressive chromatin structures. In order for viral replication to progress, the host’s own histone demethylases are recruited to the viral genome to reverse this repression.

Mouse Anti-Mouse CXCL9 (Mig) Monoclonal Antibodies

This technology describes monoclonal antibodies against mouse chemokine (C-X-C motif) ligand 9 (CXCL9), also known as Monokine induced by gamma interferon (Mig). CXCL9 is a secreted protein that functions to attract white cells and increased expression of CXCL9 has been linked to several diseases. The inventors at the NIH generated over 100 anti-mouse CXCL9 antibodies from a CLXL9/Mig knockout mouse and further characterized several antibodies to show neutralization of CXCL9.