Gene Therapy for Treatment of CRX-Autosomal Dominant Retinopathies

Mutations in the cone rod homeobox (CRX) transcription factor lead to distinct retinopathy phenotypes, including early-onset vision impairment in dominant Leber congenital amaurosis (LCA). Adeno-Associated virus (AAV) vector-mediated delivery of a CRX cDNA under the control of a CRX promoter region partially restored photoreceptor phenotype and expression of phototransduction genes in an in vitro model of CRX-LCA.

Modified griffithsin tandemers for enhanced activity and reduced viral aggregation

Griffithsin (GRFT) is a lectin with potent antiviral properties that is capable of preventing and treating infections caused by a number of enveloped viruses (including HIV, SARS, HCV, HSV, and Japanese encephalitis) and is currently in clinical development as an anti-HIV microbicide. In addition to its broad antiviral activity, GRFT is stable at high temperature and at a broad pH range, displays low toxicity and immunogenicity, and is amenable to large-scale manufacturing.

Novel Anti-HIV Compounds Using Peptides or Peptide Mimetics

The subject invention describes a new class of compounds (such as peptides or mimetics) that target viral RNAs and inhibit the viral life cycle by blocking the viral recognition process. More specifically, these compounds are the first against an RNA Target - currently there are no clinical drugs against RNA targets in the treatment of any type of human disease.

Methods for Producing Stem Cell-Like Memory T Cells for Use in T Cell-Based Immunotherapies

T cells currently employed for T cell-based immunotherapies are often senescent, terminally differentiated cells with poor proliferative and survival capacity. Recently, however, scientists at the National Cancer Institute (NCI) identified and characterized a new human memory T cell population with stem cell-like properties. Since these T cells have limited quantities in vivo, the scientists have developed methods by which high numbers of these cells can be generated ex vivo for use in T cell-based immunotherapies.

Peptide Hydrogels for Rate-Controlled Delivery of Therapeutics

Hydrogels represent an attractive controlled drug-delivery system that have been used in various clinical applications, such as: tissue engineering for wound healing, surgical procedures, pain management, cardiology, and oncology. High-water content of hydrogels confers tissue-like physical properties and the crosslinked fibrillar network enables encapsulation of labile small molecule drugs, peptides, proteins, nucleic acids, proteins, nanoparticles, or cells.

T cell Receptors Which Recognize Mutated EGFR

Epidermal growth factor receptor (EGFR) is a transmembrane protein involved in cell growth and proliferation. Mutations in this protein can lead to overexpression, causing several types of cancer; notably, non-small cell lung cancer (NSCLC). For example, mutations in EGFR are found in up to 50% of NSCLC patients and the E746-A750 deletion accounts for 30-40% of such EGFR mutations. Currently, there are no available therapeutics that specifically target the E746-A750 deletion. 

Human T Cell Receptors for Treating Cancer

T cell receptors (TCRs) are proteins that recognize antigens in the context of infected or transformed cells and activate T cells to mediate an immune response and destroy abnormal cells. TCRs consist of two domains, one variable domain that recognizes the antigen and one constant region that helps the TCR anchor to the membrane and transmit recognition signals by interacting with other proteins. When a TCR is stimulated by an antigen, such as a tumor antigen, some signaling pathways activated in the cell lead to the production of cytokines, which mediate the immune response.

Highly Soluble Pyrimido-Dione-Quinoline Compounds: Small Molecules that Stabilize and Activate p53 in Transformed Cells

The tumor-suppressor p53 protein plays a major role in tumor development. Most human cancers fail to normally activate wild-type p53, which is at least partly responsible for the unregulated growth of cancer cells and their failure to undergo apoptosis. While many chemotherapeutics enhance p53 levels, their non-specific DNA damage (genotoxicity) causes unfavorable side effects.
 

Efficient Methods to Prepare Hematopoietic Progenitor Cells in vitro for Therapeutic Use

Hematopoietic progenitor cells (HPC) are multi-potent hematopoietic lineage cells that can differentiate into any type of blood cell, including but not limited to erythrocytes, T cells, B cells, and natural killer cells. As such, they have high therapeutic potential in the fields of regenerative medicine and cancer immunotherapy, especially when generated from patient-derived induced pluripotent stem cells (iPSC). Currently, the most efficient protocol to produce HPCs is co-culturing human iPSCs (hiPSC) with mouse stromal cells as a two-dimensional (2D) monolayer.

Inhibition of T Cell Lactate Dehydrogenase (LDH) ex vivo Enhances the Anti-tumor Efficacy of Adoptive T Cell Therapy

Adoptive T cell therapy (ACT) with tumor infiltrating lymphocytes (TIL), T cell receptor (TCR) and Chimeric Antigen Receptor (CAR) engineered T cells, or hematopoietic stem cell transplantation, is a promising new approach to cancer treatment. ACT harnesses an individual's adaptive immune system to fight against cancer, with fewer side-effects and more specific anti-tumor activity. Despite their promise of ACT as curative, these therapies are often limited by the persistence and robustness of the responses of the T cells to the cancer cells.