Thalidomide Analogs that Inhibit Inflammation and Angiogenesis

Thalidomide and its close analogs (lenalidomide and pomalidomide) are widely used to treat a variety of diseases, such as multiple myeloma and other cancers as well as the symptoms of several inflammatory disorders. However, thalidomide is known for its teratogenic adverse effects when first clinically introduced in the 1950s, and is associated with drowsiness and peripheral neuropathy. Hence, there is intense interest to synthesize, identify and develop safer analogs. 

Small Molecule Ephrin (Eph) Tyrosine Kinase Inhibitors for the Treatment of Colorectal Cancer and Other Eph Growth-dependent Solid Tumors

Advanced colorectal carcinoma is currently incurable, and new therapies are urgently needed. Ephrin (Eph) receptors are a clinically relevant class of receptor tyrosine kinases. Related signaling pathways are associated with oncogenesis of a number of cancers. NCI investigators found that phosphotyrosine-dependent Eph receptor signaling sustains colorectal carcinoma cell survival, thereby uncovering a survival pathway active in colorectal carcinoma cells.

T cell tuning molecules that modify the immune response to cancer cells

Researchers at NIH/NICHD have identified approximately 200 proteins as candidate molecules (leads) that “fine tune” T cell receptor (TCR) signaling. Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD) seeks partners to collaborate on in vitro studies to validate these potential immunomodulators and to conduct in vivo studies in a murine cancer model to determine the effects of ligands (e.g. antibodies) to the proteins to determine their effect on the immune response to cancer cells.

Nanoparticle-hydrogel Composite for Nucleic Acid Molecule Delivery

Mesothelioma is an aggressive cancer covering anatomic surfaces (e.g. lining of the lungs, heart, abdomen, etc.) that resists multi-modality therapies. Regional recurrence of mesothelioma from residual tumor cells prevents long-term benefits after surgical resection. Furthermore, there is no clinical consensus on intracavitary adjuvants that are effective in extending the tumor reduction effect of surgery.

Calcium (Ca2+) Flux-Dependent Method to Detect and Isolate Tumor Reactive T Cell Receptors (TCRs)

T cells with T cell receptors (TCRs) for cancer-specific antigens are used for adoptive cell therapy (ACT), wherein a patient’s T cells are redirected against their own cancer. However, these isolated T cells may require further ex vivo manipulation to enhance their anti-tumor activity. The ex vivo manipulation of these T cells, or the selection of less functionally inert T cells, and genetic insertion of tumor specific TCRs may circumvent these limitations.

A Triple Combination HIV Microbicide

The HIV-positive population continues to rise despite a worldwide decline in the rates of infection caused by human immunodeficiency virus (HIV).  The HIV virus continues to spread due to a lack of effective vaccines and pre-exposure prophylaxis methods, even though the availability and effectiveness of antiretroviral therapy has helped reduce acquired immunodeficiency syndrome (AIDS)-related deaths. 

Overexpression of Phf19 on T Cells Enhances Therapeutic Effects of T Cell-Based Therapies (such as Chimeric Antigen Receptor [CAR] Therapies)

T cell-based immunotherapy (such as CAR therapies) is a promising approach for the treatment of several cancers. However, T cells currently employed for various T cell-based immunotherapies are usually senescent and terminally differentiated leading to poor proliferative and survival capacity, limiting their therapeutic effectiveness once transferred into a patient’s blood. 

Nucleic Acid Nanoparticles (NANP) and Methods of Using Same for Controlled Immunomodulation

The technology is directed to compositions and methods of designing nucleic acid nanoparticles (NANPs) composed entirely of DNA, RNA, or DNA and RNA to achieve desirable immunostimulation and decrease undesirable effects on the immune system by changing the composition of the NANP. Benefits of the invention include the desirable activation of the immune system by these particles to increase the efficacy of vaccines and immunotherapies.

Improved Personalized Cancer Immunotherapy

Scientists at NIH have identified a process to select highly tumor-reactive T cells from a patient tumor sample based on the expression of four specific T cell surface markers: programmed cell death protein 1 (PD-1; CD279), 4-1BB (CD137), T cell lg-and mucin-domain-containing molecule-3 (TIM-3), and/or lymphocyte activation gene 3 (LAG-3). After this enriched population of tumor fighting T cells, primarily tumor infiltrating lymphocytes (TIL), is selected and expanded to large quantities, it gets re-infused into the patient via an adoptive cell transfer (ACT) regimen.