Imaging Inflammation using PET Radioligands that Target Translocator Protein 18?kDa with High Affinity Regardless of Genotype

This technology includes a group of radioligands that label inflammatory cells specifically, accurately, and across different genotypes and can be detected using Positron Emission Tomography (PET). The radioligands target the Translocator protein 18 kDa (TSPO) receptor which is present on the outer mitochondrial membrane and is involved in the production of steroids. Current TSPO radioligands either lack specificity or have highly variable inter-subject sensitivities due to TSPO genotypic differences.

Imaging Inflammation using PET Radioligands that Target Translocator Protein 18?kDa with High Affinity Regardless of Genotype

This technology includes a group of radioligands that label inflammatory cells specifically, accurately, and across different genotypes and can be detected using Positron Emission Tomography (PET). The radioligands target the Translocator protein 18 kDa (TSPO) receptor which is present on the outer mitochondrial membrane and is involved in the production of steroids. Current TSPO radioligands either lack specificity or have highly variable inter-subject sensitivities due to TSPO genotypic differences.

NIMH DAO Toolbox: Data acquisition software that enables real-time sample analysis

This technology relates to a software package called NIMH DAO Toolbox that uses multithreading and a unique buffer structure to shorten gaps in sample readouts. Data acquisition devices running in continuous sampling mode collect data samples at a given sampling rate. The samples are typically stored in a memory buffer and read out at a regular interval. If the sampling rate is short enough, there can be a gap between the time the first sample is acquired and the time that sample is available to the user. This gap is typically on the order of tens of milliseconds.

Radioligand for imaging brain PDE4 subtype D receptors with positron emission tomography

The technology relates to the first radioligands that can be used to image and quantify the enzyme phosphodiesterase subtype D (PDE4D). The PDE4D proteins have a role in carrying out signal transduction pathways in several cell types and is thought to be the key target of various antidepressants. Current work with imaging the radioligands in monkey brains using positron emission tomography (PET) has been successful, and further work with humans is needed.

OASIS: Automated brain lesion detection using cross-sectional multimodal magnetic resonance imaging

This invention is a novel statistical method for automatically detecting lesions in cross-sectional brain magnetic resonance imaging (MRI) studies. OASIS uses multimodal MRI from one image acquisition session and produces voxel-level probability maps of the brain that quantifies the likelihood that each voxel is part of a lesion. Binary lesion segmentations are created from these probability maps using a validated population-level threshold. In this application, fluid attenuated inversion recovery (FLAIR), proton density (PD), T2-weighted, and Tl-weighted volumes were used.

Automatic brain lesion incidence and detection from multimodal longitudinal magnetic resonance imaging using SuBLIME

This invention relates to methods and algorithms that incorporate information from multiple imaging modalities to identify, estimate the size, and track the time course of brain lesions. Subjects develop brain lesions over the natural course of a disease. Currently, lesions are measured and tracked by a trained neuroradiologist using slice-by-slice inspection, a slow process that is prone to human error and hard to generalize to large observational studies.

HeLa Cells Stably Expressing YFP-Parkin and mt-mKeima to Study Parkinson Disease

This technology includes a cell line that stably expresses YFP-Parkin and mt-mKeima that can be used to study mitochondrial degradation, mitophagy, using flow cytometry (FACS). Compromised mitophagy is implicated in Parkinson disease. The effects of any compounds or genetic alteration on Parkin-mediated mitophagy can be monitored.

Improved cortical lesion detection by MRI using high resolution CSF-suppressed T2*-weighted imaging

This technology is an improvement on the ability to visualize cortical lesions in neurological diseases that cause focal tissue damage to the cortex, including multiple sclerosis (MS). Two approaches are used. The first approach includes optimization of routinely available diffusion-weighted sequences to maximize resolution and contrast, both of which are required to differentiate small cortical lesions from normal-appearing cortex.

Design of Switch-Mode Amplifier to Transform Single Transmit Hardware for Multi-Nuclear MRI

This technology includes the design and implementation for 1H-nuclear magnetic resonance imaging (MRI) that allows single transmit hardware to be "transformed" for another nucleus excitation to perform multi-nuclear MR. A radiofrequency (RF) optically controlled switch-mode amplifier prototype is tuned for excitation of two nuclei. The amplifier received the nuclei carrier signals optically through a single fiber.