Hybrid Computer Tomography Scanning System

The invention relates to a combination hybrid computer tomography (CT) system that is particularly suited for elucidating stages in pulmonary diseases, notably cystic fibrosis and lung cancer. Improved visualization of lung parenchyma and the margins of lung cysts (non-invasive “virtual biopsy”) may provide sufficient detail to distinguish the types of cystic lesions such that the typical lung tissue pathologic biopsy would not be needed to make a diagnosis.

Personalized Cancer Evaluation (PERCEVAL) Method and Software

Cancer represents the leading cause of morbidity and mortality worldwide, with approximately 14 million new cases and 8.2 million cancer related deaths in 2012. This number is predicted to rise by approximately 70% over the next two decades according to the World Health Organization. Prognosis depends heavily on both early detection and frequent monitoring of the patient's response to treatment. Cancerous tumors shed nucleic acids into blood, which can be detected by ultra-deep sequencing of mitochondrial DNA (mtDNA).

Novel Magnetic Resonance Spectroscopy (MRS) Technique to Quantify Brain Metabolites

With respect to quantification of metabolites in the brain, conventional methods of magnetic resonance spectroscopy (MRS) yield results that are highly variable and highly dependent on the sequence type being applied. This invention describes a novel MRS technique that involves preparing longitudinal steady states at different flip angles using trains of RF pulses interspersed with field gradients to quantify metabolites.

A Novel Reagent for Labeling PET Tracers at Trifluoromethyl Groups

The molecular imaging technique of positron emission tomography (PET) is an increasingly important tool in biomedical research and in drug discovery and development. Many small molecule drugs and potential PET radiotracers carry trifluoromethyl (CF3) groups. Because CF3 groups are generally considered to be metabolically stable, there is a strong interest in developing drugs with these groups.

Fluorescent Nanodiamonds as Fiducial Markers for Microscopy

The invention relates to fluorescent nanodiamonds (FNDs) and their uses as fiducial markers for microscopy. FNDs are bright fluorescent probes that do not blink or bleach and have broad fluorescence excitation and emission peaks. The fluorescence intensity can be readily controlled by the size of the FND, the number of fluorescent centers produced in the nanodiamonds, or in situ through the application of a weak magnetic field.

Software for Fully Automating Myocardial Perfusion Quantification

Software is has been developed and available for licensing that fully automates image processing for the quantification of myocardial blood flow (MBF) pixel maps from firstpass contrast-enhanced cardiac magnetic resonance (CMR) perfusion images. The system removes the need for laborious manual quantitative CMR perfusion pixel map processing and can process prospective and retrospective studies acquired from various imaging protocols. In full automation, arterial input function (AIF) images are processed for motion correction and myocardial perfusion images are corrected for intensity bias.

Octopod (8-Pointed Star) Iron Oxide Nanoparticles Enhance MRI T2 Contrast

The octopod-shaped iron oxide nanoparticles of this technology significantly enhance contrast in MRI imaging compared to spherical superparamagnetic iron oxide nanoparticle T2 contrast agents. These octopod iron oxide nanoparticles show a transverse relaxivity that is over five times greater than comparable spherical agents. Because the unique octopod shape creates a greater effective radius than spherical agents, but maintains similar magnetization properties, the relaxation rate is improved. The improved relaxation rate greatly enhances the contrast of images.

A Novel Demodulation System in X-ray Imaging

In various x-ray imaging methods, including scattering correction and phase contrast imaging, intensity modulation in space is introduced into the projection images by the use of masks, gratings, or apertures. The present invention relates to a process to demodulate the modulation. The current demodulation processes are either to remove the modulation pattern through digital processing or to move the modulation pattern on the detector in a series of images that requires mechanical movements of a component and tends to lose some information of the imaged object.

A Novel X-ray Grating to Enhance Phase Contrast Imaging

The present invention relates to improving x-ray phase contrast imaging. The invention discloses a novel grating interferometer for phase contrast imaging with hard x-rays that overcomes limitations in the level of sensitivity by utilizing the advantages of far-field interferometers. The novel design and fabrication process can easily acquire absolute and differential phase images of lightly absorbing samples.

Miniature Serial Microtome for Block-Face Imaging

A microtome device is used in a variety of microcopy techniques to remove very thin (e.g., in the tens of nanometers range) portions from the top of a sample between successive images. This technology discloses a design for a microtome device that offers several unique features and advantages over commercially available microtomes. A prototype of the microtome has been built and demonstrated to work with a serial block-face scanning electron microscopy in order to serially collect ultrathin sections from plastic embedded biological tissues, specifically from brain tissues.