Monoclonal Antibodies that Neutralize <i>B. anthracis</i> Protective Antigen (PA), Lethal Factor (LF) and Edema Factor (EF)

Anthrax, whether resulting from natural or bioterrorist-associated exposure, is a constant threat to human health. The lethality of anthrax is primarily the result of the effects of anthrax toxin, which has 3 components: a receptor-binding protein known as "protective antigen" (PA) and 2 catalytic proteins known as "lethal factor" (LF) and "edema factor" (EF). Although production of an efficient anthrax vaccine is an ultimate goal, the benefits of vaccination can be expected only if a large proportion of the population at risk is immunized.

Development of Dengue Virus Type 3 Vaccine Candidates

The disease burden associated with dengue virus infection has increased over the past several decades in the tropical and semi-tropical regions of the world, where over 2 billion people live at risk of dengue infection. Annually, there are an estimated fifty (50) to one hundred (100) million cases of dengue fever, making development of an effective vaccine a priority. In addition, there is a need for a "travelers vaccine" to protect those visiting dengue virus endemic areas, similar in scope to other currently available "travelers vaccines", such as hepatitis A vaccine.

A Shuttle Plasmid, Recombinant MVA/HIV1 Clinical Vaccine Constructs and a Mechanism for Enhanced Stability of Foreign Gene Inserts by Codon Alternation and for Insertion of the Foreign Gene Between Two Vaccinia Virus Essential Genes

Since the onset of the AIDS epidemic more than two decades ago, enormous efforts have been directed to making a vaccine that will protect against human immunodeficiency virus-1 (HIV); an effective vaccine is thought to require the induction of cellular and humoral responses. Vaccine candidates have included a variety of HIV immunogens delivered as DNA, attenuated poxviruses, adenoviruses, vesicular stomatitis virus, proteins, and various combinations thereof. The inventors' efforts to design an HIV vaccine have focused on modified vaccinia virus Ankara (MVA) as a vector.

Targeting Poly-Gamma-Glutamic Acid to Treat Staphylococcus Epidermidis and Related Infections

Over the past decade, Staphylococcus epidermidis has become the most prevalent pathogen involved in nosocomial infections. Usually an innocuous commensal microorganism on human skin, this member of the coagulase-negative group of staphylococci can cause severe infection after penetration of the epidermal protective barriers of the human body. In the U.S. alone, S. epidermidis infections on in-dwelling medical devices, which represent the main type of infection with S. epidermidis, cost the public health system approximately $1 billion per year. Importantly, S.

Monoclonal Antibodies Against Orthopoxviruses

Concerns that variola (smallpox) virus might be used as a biological weapon have led to the recommendation of widespread vaccination with vaccinia virus. While vaccination is generally safe and effective for prevention of smallpox, it is well documented that various adverse reactions in individuals have been caused by vaccination with existing licensed vaccines. Vaccinia immune globulin (VIG) prepared from vaccinated humans has historically been used to treat adverse reactions arising from vaccinia immunization.

Recombinant Baculoviruses Containing Inserts of the Major Structural Genes (vp1) of the Human Polyomaviruses JCV and BKV

The development of sensitive and specific tests for JC virus and BK virus activity may provide tools essential in the steps required to find a treatment for these fatal infections. This invention describes a Recombinant Vpl protein (rVp1) that can be used 1) as an antigen source for ELISA assays 2) for studies of viral proteins in cells and 3) for the self assembly of icosahedral particles encapsidating DNA [gene expression of choice in range of up to 5.1kb size gene].

Probe Set Global Optimization

Available for licensing and commercial development are methods to optimize sequence-based assays such as microarrays, multiplexed PCR or multiplexed antibody methods. This computational method uses numerical optimization to identify an optimal probe set to be used in an assay for the measurement of a specified set of targets. The method incorporates the sequence information of the target (protein, DNA, RNA or other polymer), the assay characteristics, limits on probe set size and assay probe length in its optimization.

Monoclonal Antibodies Against Dengue and Other Viruses With Deletion in Fc Region

The four dengue virus (DENV) serotypes (DENV-1 to DENV-4) are the most important arthropod-borne flaviviruses in terms of morbidity and geographic distribution. Up to 100 million DENV infections occur every year, mostly in tropical and subtropical areas where vector mosquitoes are abundant. Infection with any of the DENV serotypes may be asymptomatic or may lead to classic dengue fever or more severe dengue hemorrhagic fever (DHF) and dengue shock syndrome (DSS), which are increasingly common in the dengue endemic areas.

Chlamydia Vaccine

Chlamydia trachomatis is an obligate intracellular bacterial pathogen that colonizes and infects oculogenital mucosal surfaces. The organism exists as multiple serovariants that infect millions of people worldwide. Ocular infections cause trachoma, a chronic follicular conjunctivitis that results in scarring and blindness. The World Health Organization estimates that 300–500 million people are afflicted by trachoma, making it the most prevalent form of infectious preventable blindness.