Tni-FNL: An Improved Trichoplusia Ni Cell Line for Protein Expression

Researchers at the National Cancer Institute (NCI) have developed an improved insect cell line, Tni-FNL, derived from the cabbage looper, Trichoplusia ni.  The Tni-FNL cell line is capable of high level expression of heterologous proteins using baculovirus-based expression systems.  When compared to commercially available cell lines used for the same purpose, the Tni-FNL cell line often outperforms those for protein expression.  These cells have a high growth rate and are capable of growth at a lower temperature.

Improved Production of Prenylated Protein in Insect Cells

KRAS and other Ras-family enzymes are an important component of over 30% of human cancers, however, no effective therapeutics targeting Ras or Ras-driven cancers are currently available.  The production of Ras proteins in vitro is required for the identification and characterization of Ras targeting drugs.  An important step in producing the Ras protein involves prenylation of the C-terminus of the protein via farnesyltransferase, a modification that does not occur in prokaryotic organisms.  Previous attempts to generate properly processed Ras in eukaryotic cells has

Lentiviral Vectors with Dual Fluorescence/Luminescence Reporters

The National Cancer Institute’s Protein Expression Laboratory seeks parties to co-develop dual luminescent/fluorescent cancer biomarkers.

In research settings, visualization of  tumors or tumor cells is often done using either bioluminescence or fluorescence.  However, both of these methods have shortcomings: bioluminescence is not sensitive enough to sort individual tumor cells, and fluorescence cannot be used effectively to view internal tumors and is best used with surface tumors.

Transgenic Mouse Model of Human Basal Triple Negative Breast Cancer

The NCI Laboratory of Cancer Biology and Genetics seeks parties interested in collaborative research to further develop this mouse model of triple-negative breast cancer (TNBC) to study cancer biology and for preclinical testing.  As a Research Tool, patent protection is not being pursued for this technology; more information to access this strain can be found here: https://www.jax.org/strain/030386.

Zirconium-89 PET Imaging Agent for Cancer

Researchers at the NCI Radiation Oncology Branch  and NIH CIT Center for Molecular Modeling developed a tetrahydroxamate chelation technology that provides a more-stable Zr-89 complex as an immuno-PET cancer imaging agent. In either the linear or the macrocyclic form, the tetrahydroxamate complexes exhibit greater stability as chelating agents compared to Zr-89 complexed to the siderophore desferrioxamine B (DFB), a trihydroxamate, which represent

Mouse Model for the Preclinical Study of Metastatic Disease

The successful development of new cancer therapeutics requires reliable preclinical data that are obtained from mouse models for cancer. Human tumor xenografts, which require transplantation of human tumor cells into an immune compromised mouse, represent the current standard mouse model for cancer. Since the immune system plays an important role in tumor growth, progression and metastasis, the current standard mouse model is not ideal for accurate prediction of therapeutic effectiveness in patients.

SMAD3 Reporter Mouse for Assessing TGF-ß/Activin Pathway Activation

The Transforming Growth Factor Beta (TGF-ß) ligands (i.e., TGF-ß1, -ß2, -ß3) are key regulatory proteins in animal physiology. Disruption of normal TGF-ß signaling is associated with many diseases from cancer to fibrosis. In mice and humans, TGF-ß activates TGF-ß receptors (e.g., TGFBR1), which activates SMAD proteins that alter gene expression and contribute to tumorigenesis.  Reliable animal models are essential for the study of TGF-ß signaling.