Metastatic ovarian cancer mouse models and cell lines for preclinical studies

The high mortality rate from ovarian cancers can be attributed to late-stage diagnosis and lack of effective treatment. Despite enormous effort to develop better targeted therapies, platinum-based chemotherapy still remains the standard of care for ovarian cancer patients, and resistance occurs at a high rate. One of the rate limiting factors for translation of new drug discoveries into clinical treatments has been the lack of suitable preclinical cancer models with high predictive value.

Heterocyclic P2Y14 Antagonists for the Treatment of Various Conditions

The technology discloses composition of compounds that are highly selective P2Y14 receptor antagonists,
with moderate affinity with insignificant antagonism of other P2Y receptors. These compounds might provide a
treatment for patients for various disease conditions, including lung inflammation, kidney inflammation,
asthma, diabetes, obesity, and neuropathic pain of diverse states. In vivo data using mouse lines with the
receptor knocked out in specific tissues showed that P2Y14 receptor antagonists act on adipocytes to improve

An Innovative Adapter for Expedited and Automated Thawing of viably Frozen Cells

This technology is a device and system for expediting the thawing frozen specimens (e.g., cryopreserved cells) contained in cryo-vials, offering a breakthrough solution for researchers seeking efficiency and precision in their workflows. The device is equipped with a small elongated tubular adaptor that suspends a cryo-vial of frozen cells over a centrifuge tube containing culture medium in an inverted position. With a focus on speed, efficiency and automation, the adaptor dramatically expedites the process of recovering viable cells from frozen specimens.

Hybridomas Producing Antibodies to Neuraminidase for Influenza A (H3N2) Diagnostics, Vaccine, and Therapeutic Development

Influenza A and B viruses can cause seasonal flu epidemics ― commonly known as the “flu season” ― and infect the nose, throat, eyes, and lungs in humans. Typically, flu seasons that are dominated by influenza A (H3N2) virus activity have higher associated hospitalizations and deaths in at-risk groups, such as people ages 65 and older and young children. Influenza A (H3N2) virus can also cause respiratory disease in animals, such as canines and swine.

Alpha-galactosidase-A Knockout Mouse Model for Studying Fabry Disease

This technology includes an alpha-galactosidase-A knockout mouse model that can be used to study Fabry disease, an X-linked lysosomal storage disorder. Alpha-galactosidase-A is a crucial enzyme responsible for the breakdown of glycolipids, particularly globotriaosylceramide (Gb3), within lysosomes. In Fabry disease, a rare and inherited lysosomal storage disorder, mutations in the GLA gene lead to deficient or non-functional alpha-galactosidase-A enzyme activity.

Improved Antibodies Against ERBB4/HER4

The Eunice Kennedy Shriver National Institute of Child Health and Human Development, Section on Molecular Neurobiology is seeking statements of capability or interest from parties interested in collaborative research to further evaluate or commercialize specific rabbit monoclonal antibodies generated against the ErbB4 receptor (also known as HER4) that have been validated for specificity using tissue sections and extracts from ErbB4 knockout mice.

Mice, Organs, and Mouse Alleles Carrying Germline and Conditional Deletions of the Zbtb7b Gene

The Zbtb7b gene encodes the zinc finger transcription factor ThPOK (also known as cKrox) that promotes CD4 lineage differentiation in immature T cells. CD4+ T cells, also known as “helper” T cells, are critical for long-term immunity against pathogens as well as for promoting CD8+ “effector” T cell and effective B cell responses. ThPOK is needed for the development and functional fitness of CD4+ T cells as well as multiple aspects of the immune response to infection. As such, ThPOK offers a potential target for immune regulation.

Cell Lines that Constitutively Express High-Frequency KRAS and P53 Mutations and Human Leukocyte Antigens (HLAs)

Adoptive cell therapy (ACT) is a breakthrough form of cancer immunotherapy that utilizes tumor infiltrating lymphocytes (TILs) or genetically engineered T cells to attack tumor cells through recognition of tumor-specific antigens. A major hurdle in the development of ACT is the identification and isolation of T cells that recognize antigens that are expressed by tumor cells but not by healthy tissues. Current methods to identify such T cells involve extracting autologous antigen presenting cells (APCs) from patients in an expensive, laborious, and time-consuming process.

Humanized Mouse Model to Study Mesothelin (MSLN) -targeted Cancer Therapeutics: Bl6/TPO Mice

Mesothelin (MSLN) is an antigen highly expressed in several human cancers including mesotheliomas, ovarian cancers and pancreatic cancers. As such, human MSLN (hMSLN) is a target for many anti-cancer drugs. Most therapeutics targeting hMSLN do not recognize the mouse isoform of MSLN (mMSLN) and therefore cannot be tested in mouse cancer models.