Methods for the Selection of Subjects for Multiple Sclerosis Therapy

Multiple Sclerosis (MS) is a life-long chronic autoimmune disease diagnosed primarily in young adults who have a virtually normal life expectancy. Estimates place the annual costs of MS in the United States in excess of $2.5 billion. There are approximately 250,000 to 400,000 persons in the United States with MS, and approximately 2.5 million persons worldwide suffer from MS. A variety of therapies are used to treat MS, but there is no single therapy that can be used to treat all patients.

Generation of Smad3-null Mice and Smad4-conditional Mice

SMADs are a novel set of mammalian proteins that act downstream of TGF-beta family ligands. These proteins can be categorized into three distinct functional sets, receptor-activated SMADs (SMADs 1,2,3,5, and 8), the common mediator SMAD (SMAD 4), and inhibitory SMADs (SMADs 6 and 7). SMAD proteins are thought to play a role in vertebrate development and tumorigenesis.

The Use of Rabbits with Defined Immunoglobulin Light Chain Genes (C<sub>kappa</sub> b allotypes) to Optimize Production of Chimeric and Humanized Monoclonal Antibodies for Therapeutic, Imaging and Diagnostic Applications

Biological materials are important research tools that can be used for diagnostic as well as therapeutic purposes. Antibodies have become viable drugs in the market today and there is a general market need for systems that may facilitate production of efficient and effective antibodies. In recent years, monoclonal antibodies have gained significant importance in their use, both as diagnostics and therapeutics, to intervene and combat diseases such as cancer, cardiovascular diseases, and infections.

Development of Gene Chip Technology for Vascular Risk Assessment

Prevention of cardiovascular disorders such as myocardial infarction and stroke is an area of major public health importance. Currently, several risk factors for future cardiovascular disorders have been described and are in wide clinical use in the detection of individuals at high risk. However a large number of cardiovascular disorders occur in individuals with apparently low to moderate risk profiles, thereby limiting the ability to identify such patients. Moreover, many of the risk factors require accurate gathering of clinical information.

A New Mouse Monoclonal Antibody Against Human Microphthalmia Transcription Factor (MITF)

Micropthalmia Transcription Factor (MITF) plays an important role in melanocyte development and melanoma growth. MITF is important for embryonic development, regulating the generation of pigment cells and formation of melanomas and other tumors. MITF is made in various isoforms that may play unique roles for different organs during different developmental periods. Additionally, tissue MITF levels can serve as a molecular marker for the diagnosis of metastatic melanoma and therapeutic response.

Probe Set Global Optimization

Available for licensing and commercial development are methods to optimize sequence-based assays such as microarrays, multiplexed PCR or multiplexed antibody methods. This computational method uses numerical optimization to identify an optimal probe set to be used in an assay for the measurement of a specified set of targets. The method incorporates the sequence information of the target (protein, DNA, RNA or other polymer), the assay characteristics, limits on probe set size and assay probe length in its optimization.

Rapid and Sensitive Detection of Nucleic Acid Sequence Variations

The ability to easily detect small mutations in nucleic acids, such as single base substitutions, can provide a powerful tool for use in cancer detection, perinatal screens for inherited diseases, and analysis of genetic polymorphisms such as genetic mapping or for identification purposes. Current approaches make use of the mismatch that occurs between complimentary strands of DNA when there is a genetic mutation, the electrophoretic mobility differences caused by small sequence changes, and chemicals or enzymes that can cleave heteroduplex sites.

Genes For Niemann-Pick Type C Disease

Niemann-Pick disease is a class of inherited lipid storage diseases. Niemann-Pick Type C disease is an autosomal recessive neurovisceral lipid storage disorder which leads to systemic and neurological abnormalities including ataxia, seizures, and loss of speech. Patients with the disease typically die as children. The biochemical hallmark of Niemann-Pick Type C cells is the abnormal accumulation of unesterified cholesterol in lysosomes, which results in the delayed homeostatic regulation of both uptake and esterification of low density lipoprotein (LDL) cholesterol.

Prostatic Adenocarcinoma Cells Expressing or Lacking the Tumor Suppressor Gene PTEN

PTEN is a tumor suppressor gene that is frequently deleted or mutated in a variety of human cancers, including prostate, breast, endometrial, lung, and ovarian cancers. In prostate cancer cells, PTEN deletion is the most common event observed. The loss of PTEN is thought to play and important role in tumor cell proliferation and metastasis due to a lack of control of the signaling pathways that mediate cellular processes such as apoptosis and migration.