Methods for the Simultaneous Detection of Multiple Analytes

CDC researchers have developed a method of simultaneously detecting and distinguishing multiple antigens within a biological sample. Epidemiological and vaccine studies require species serotype identification. Current methods of serotyping are labor intensive and can easily give subjective, errant results. This technology utilizes serotype specific antibodies bound to fluorescent beads, allowing for simultaneous single tube capture and detection of multiple antigens in one rapid, high-throughput flow cytometry assay.

Recombinant Polypeptides for Clinical Detection of Taenia solium and Diagnosis of Cysticercosis

CDC scientists have developed synthetic/recombinant polypeptides that can be used for the creation of inexpensive, high-quality cysticercosis diagnostic assays. Taenia solium is a species of pathogenic tapeworm. Intestinal infection with this parasite is referred to as taeniasis and it is acquired by ingestion of T. solium cysticerci found in raw and undercooked pork, or food contaminated with human or porcine excrement. Many infections are asymptomatic, but infection may be characterized by insomnia, anorexia, abdominal pain and weight loss.

Peptide Sequences for Chlamydophila pneumoniae Vaccine and Serological Diagnosis

CDC researchers have isolated select Chlamydophila pneumoniae peptide epitopes for development of vaccines and diagnostic assays. Currently, C. pneumoniae infection of humans has been linked to a wide variety of acute and chronic diseases, such as asthma, endocarditis, atherosclerotic vascular disease, chronic obstructive pulmonary disease, sarcoidosis, reactive arthritis and multiple sclerosis. There is presently no available peptide vaccine for the pathogen and reliable and accurate diagnostic methods are limited.

Novel In Vitro Granuloma Model for Studying Tuberculosis and Drug Efficacy

CDC researchers have developed an in vitro model system designed to simulate early-stage Mycobacterium tuberculosis infection and induced granuloma formation. This modeling platform can be used for studying tuberculosis pathogenicity, identifying phenotypically-interesting clinical isolates, studying early-stage host cytokine/chemokine responses, and in vitro candidate-drug screening.

Diagnostic Antigens for the Identification of Latent Tuberculosis Infection

CDC researchers have developed technology for sero-diagnosis of typically symptomless latent stage tuberculosis disease, posing a threat to individuals under immunosuppressive or anti-inflammatory therapies. Specifically, this diagnostic approach exploits M. tuberculosis secreted latency specific antigens, such as alpha-crystallin, in the blood or urine of patients.

Auscultatory Training System and Telemedicine Tool with Accurate Reproduction of Physiological Sounds

This CDC developed auscultatory training apparatus includes a database of prerecorded physiological sounds (e.g., lung, bowel, or heart sounds) stored on a computer for playback. Current teaching tools, which utilize previously recorded sounds, suffer from the disadvantage that playback environments cause considerable distortion and errors in sound reproduction. For example, to those trainees using such systems, the reproduced respiratory sounds do not “sound” as if they are being generated by a live patient.

Multiple Antigenic Peptide Assays for Detection of HIV and SIV Type Retroviruses

CDC scientists have developed multiple antigenic peptide immunoassays for the detection of human immunodeficiency virus (HIV) and/or simian immunodeficiency virus (SIV). HIV can be subdivided into two major types, HIV-1 and HIV-2, both of which are believed to have originated as result of zoonotic transmission. Humans are increasingly exposed to many different SIVs by wild primates. For example, human exposure to SIVs frequently occurs as a consequence of the bush meat hunting and butchering trade in Africa.

Multivalent, Multiple-Antigenic-Peptides for Serological Detection of HIV-1 Groups -M, -N, -O, and HIV-2

This CDC-developed invention pertains to multivalent antigenic peptides (MAPs) that can be used in a variety of HIV/AIDS diagnostics. There are two types of HIV: HIV-1 and HIV-2. HIV-1 is subdivided into groups M, N, and O, while HIV-2 is subdivided into subtypes A and B. Within HIV -1 group M, several different subtypes and numerous forms of recombinant viruses exist. To detect all types, groups, and subtypes of HIV by serological methods, a mixture of antigens derived from different viral strains representing different HIV types and subtypes is needed.

Air Quality Assurance: A Monitor for Continuous, Simultaneous Analysis of Atmospheric or Aerosolized Particulate Mixtures

This technology pertains to monitors for measuring the mass concentration of ambient particulate matter in an atmosphere containing both larger/coarser (e.g., respirable dust) and smaller/finer (sub-micrometer particles such as diesel particulate matter - DPM) particulate mixtures. The monitoring device can be configured for operation with a controller unit adapted to ionization sensor and/or light-scattering modules. The controller translates the sensor output signal into a quantifiable value, determining mass concentration of particulate matter within the ionization chamber.

Rabies Vaccine for the Oral Immunization of Domesticated Animals, Wildlife and Feral Animals

This invention, developed by the CDC and collaborators, entails a live, attenuated recombinant rabies virus vaccine that can elicit an effective anti-rabies immune response in animal recipients. Inoculation with a live, attenuated, rabies virus allows for the optimized production of immunity in the absence of pathogenicity. Oral administration of rabies vaccines is often a preferred route of vaccine delivery because it is most effective in wildlife. Unfortunately, availability of an oral vaccine for canines has been a significant hurdle to date.