Non-invasive Isotopic Biomarkers that Predict the Response to Liver Directed Therapy in Methymalonic Acidemia (MMA) and Propionic Acidemia (PA)

Isolated Methylmalonic Acidemia (MMA) comprises a relatively common and heterogeneous group of inborn errors of metabolism. The most common cause of isolated MMA is genetic deficiency of the enzyme methylmalonyl-coA mutase (MUT), which, unfortunately for the affected patients, is also the most clinically severe. NHGRI scientist have invented a series of assays to assess hepatic MUT activity using a stable isotopic tracing assays to measure MUT function to assess corrective therapy on hepatic mitochondrial function.

Serum Protein Biomarkers that Predict the Response to Liver Directed Therapy in Methymalonic Acidemia (MMA) and Propionic Acidemia (PA)

Isolated Methylmalonic Acidemia (MMA) comprises a relatively common and heterogeneous group of inborn errors of metabolism. The most common cause of isolated MMA is genetic deficiency of the enzyme methylmalonyl-coA mutase (MUT), which, unfortunately for the affected patients, is also the most clinically severe. NHGRI scientist have discovered biomarkers previously described cytokines that has never been associated with MMA or propionic acidemia (PA) such as FGF-21 (fibroblast like-growth factor - 21).

Human Fibroblast Cell Lines from Patients with Gangliosidosis Diseases for the Screening of Disease Therapeutics

This technology includes cell lines from patients with gangliosidosis diseases for the screening of potential therapeutics. Gangliosidosis contains different types of lipid storage disorders caused by the accumulation of lipids known as gangliosides. GM1 gangliosidosis is an ultra-rare lysosomal storage disorder caused by mutations in galactosidase beta 1 (GLB1) that result in a deficiency of beta-galactosidase. GM2 gangliosidoses are a group of autosomal recessive lysosomal storage disorders caused by accumulation of GM2 ganglioside due to the absence or near absence of B-hexosamindase.

SARS-CoV-2 Neutralizing Antibodies and Synthetic Nanobody Library Using a Humanized Llama Framework Region

NCATS has developed a highly diverse synthetic library that will allow for the rapid identification of novel nanobodies that bind to a wide arrange of target antigens. The humanized framework used to construct the library will facilitate the transition of lead candidates into patient studies. Several highly potent SARS-CoV-2 nanobodies (antibodies) have been identified and are available for further development.

NCATS is actively seeking licensing for the 1) a synthetic library and 2) the potent neutralizing antibodies with activity against SARS-CoV-2.

Monoclonal Antibodies for the Recognition of Oncogene Fusions and Alveolar Rhabdomyosarcoma (ARMS) Diagnosis

This technology includes monoclonal antibody (mAb) that binds to the junction region of the PAX3-FOXO1 and PAX7-FOXO1 fusion protein for the diagnosis of Alveolar Rhabdomyosarcoma (ARMS). Specifically, two monoclonal antibodies (PFM.1 and PFM.2) have been isolated that recognize the 92kDa bands found uniquely to the pediatric striated muscle tumors of the type Alveolar Rhabdomyosarcoma (ARMS) carrying the characteristic t(2;13)(q35;q14) or t(1;13)(p36;q14) chromosomal translocations.

Staphylococcus Epidermidis Isolates from Human Skin Samples for Use as Clinical Molecular Markers

This technology includes a catalog of commensal and pathogenic staphylococci from human skin for utilization as clinical molecular markers of skin conditions and infections. The study of microbial diversity of human skin in both healthy and disease states is important to develop tools to track infections, outbreaks, and multi-drug resistant organisms, particularly in atopic dermatitis, eczema and other microbial-associated infections. Commensal skin S. epidermidis have an open pan-genome and show considerable diversity between isolates.

DNA Methylation Based Non-invasive Blood Diagnostic Assay for Precision Cancer Detection and Classification

This technology includes a panel of 46 genomic loci of DNA methylation (represented by CpG dinucleotides on different chromosomes) with application in blood-based cancer screening. The markers robustly distinguish tumor from normal samples using 8 loci and classify 13 different tumor types. Using 39 loci, inventors were able to discriminate between individual tumor types or peripheral blood. In 4052 tumor samples from 13 tumor types, the true positive rate of classification was 91.4%.

Imaging Inflammation using PET Radioligands that Target Translocator Protein 18?kDa with High Affinity Regardless of Genotype

This technology includes a group of radioligands that label inflammatory cells specifically, accurately, and across different genotypes and can be detected using Positron Emission Tomography (PET). The radioligands target the Translocator protein 18 kDa (TSPO) receptor which is present on the outer mitochondrial membrane and is involved in the production of steroids. Current TSPO radioligands either lack specificity or have highly variable inter-subject sensitivities due to TSPO genotypic differences.

A Diagnostic Kit for Assessing Exposure or Infection by the Koala Family of Retroviruses

This invention relates to a diagnostic kit for assessing exposure to or infection by a koala retrovirus. The kit consists of specific primers and probes for the detection of three distinct subtypes of infectious koala retrovirus and may be useful in various species, including humans, primates, and koalas.

Imaging Inflammation using PET Radioligands that Target Translocator Protein 18?kDa with High Affinity Regardless of Genotype

This technology includes a group of radioligands that label inflammatory cells specifically, accurately, and across different genotypes and can be detected using Positron Emission Tomography (PET). The radioligands target the Translocator protein 18 kDa (TSPO) receptor which is present on the outer mitochondrial membrane and is involved in the production of steroids. Current TSPO radioligands either lack specificity or have highly variable inter-subject sensitivities due to TSPO genotypic differences.