MRI-Based Method for Characterizing Axonal Microstructure in Traumatic Brain Injury

Neurites of the central nervous system can be conceptualized as cylindrical pores with finite lengths and radii. In response to physical trauma, axons may assume a “beaded” morphology which alters their ability to conduct electrical impulses, impairing brain function. These microstructural changes are thought to underlie some of the cognitive defects observed in patients with traumatic brain injury (TBI). Current methods for characterizing traumatic brain injury (TBI) cannot provide microstructural detail on the 3-dimensional shape of axonal segments.

A Rabbit Anti-pT1989 ATR Monoclonal Antibody for Use in Immunoassays

Ataxia telangiectasia mutated and Rad3 Related (ATR) protein kinase is essential for regulating DNA damage checkpoints during the cell cycle. ATR, is phosphorylated at threonine 1989 site (T1989) in response to DNA damage and ATR activation leads to activation of downstream substrates, signaling cascades and cell cycle arrest. ATR is a potential target for anticancer therapeutics to induce cancer cell death by inhibiting cell cycle arrest pathways in response to chemotherapeutics.

Diagnostic Assay for Determining Patient Response to Apoptosis-related Cancer Therapy

Many known chemotherapeutic drugs kill abnormal cells through a process called apoptosis. Bcl-2 proteins are negative regulators of apoptosis that control cell survival and death. Increased expression of anti-apoptotic Bcl-2 proteins commonly occurs in up to 30% of all cancers, providing cancer cells a pro-survival advantage to evade cell death, grow, and proliferate. Drugs targeting these specific anti-apoptotic proteins are potential anti-cancer therapeutics.

Conformational Restriction of Cyanine Fluorophores in Far-Red and Near-IR Range

Small molecule fluorescent probes are important tools in diagnostic medicine. Existing far-red and near-IR cyanine fluorophores (e.g. Cy5, Alexa 647, Cy7, ICG) are active in the far-red and near-range, but these agents suffer from modest quantum yields (brightness) which limit wide utility. It has been reported that the limited brightness of these fluorophores is due to an excited-state C-C rotation pathway.

GTF2I Mutations as a Genetic Marker for Prognosis of Thymic Malignancies

Thymoma and thymic carcinomas are a rare and poorly understood group of malignancies.   Despite the growing number of biomarkers that are used for diagnosing and treating carcinomas in general, cancers of the thymus are still diagnosed, stratified and treated by a costly combination of histology, surgery and radiological procedures.  The lack of qualified biomarkers associated with thymomas and thymic carcinomas has also hampered the development of targeted therapies.