Detection of Retroviruses and HIV-1 Groups -M and -O Discrimination within Clinical Serum Samples

CDC researchers have developed methods for detecting retroviruses within a patient blood sample and discriminating HIV-1 samples within serum specimens. HIV-1 can be genetically classified into two major groups, group M (major) and Group O (outlier) with group O comprising all divergent viruses that do not cluster with group M. The identification of group O infections raised public health concerns about the safety of the blood supply because HIV-1 screening by group M-based serologic tests does not consistently detect group O infection.

Virus Microneutralization Assay Data Analysis for Vaccine Development, Enhancement and Efficacy Improvement

This CDC generated invention entails improved methods of analyzing microneutralization assays, especially for the purposes of determining specific antibody concentrations and optimizing vaccine formulation. More specifically, the invention is a set of SAS based programs using 4-parameter logistic curve fitting algorithms to interpolate between individual data points, allowing for enhanced accuracy and precision when establishing neutralization titers.

Therapeutic, Bifunctional Janus Microparticles with Spatially Segregated Surface Proteins and Methods of Production

CDC researchers have developed a fabrication process to create bifunctional microparticles displaying two distinct proteins that are spatially segregated onto a single hemispheric surface. At present, there is no described way of producing biological microparticles with two distinct types of separated proteins. Bifunctional Janus particles generated by the CDC approach possess biologically relevant, native conformation proteins attached to a biologically unreactive and safe substrate.

Stable, Early-stage Biomarker for Diagnosis of Bacillus anthracis Infection and Anthrax Vaccine Development

This invention comprises monoclonal antibodies, proteins, and related nucleic acid coding sequences that identify all or part of the antigenic anthrose oligosaccharide of Bacillus anthracis, the causative agent of anthrax toxicity in humans. It is imperative to identify virulent B. anthracis with speed and specificity, however there presently is substantial difficulty in early-stage recognition and diagnosis of anthrax inhalation.

Novel Targets to Prevent Borrelia burgdorferi Infection and Lyme Disease

B. burgdorferi-infected ticks can cause Lyme disease in mammalian hosts. This technology relates to the use of B. burgdorferi outer surface proteins (BBA64 and BBA66) as Lyme disease vaccine candidates. In vivo animal studies demonstrate these outer surface proteins inhibit tick-to-host B. burgdorferi transmission. Presently, there is no vaccine approved for Lyme disease.

Genome Wide DNase I Hypersensitive Sites Detection in Formalin-Fixed Paraffin-Embedded Single Cells

A method of detecting DNase I hypersensitive sites ((DHS) in a single cell or very small number of cells, including cells recovered from formalin-fixed paraffin-embedded (FFPE) tissue slides of patient samples. DHS has revealed a large number of potential regulatory elements for transcriptional regulation in various cell types. The application of DNase-Seq techniques to patient samples can elucidate pathophysiological mechanisms of gene function in a variety of diseases as well as provide potentially important diagnostic and prognostic information.

Fluorescent Nanodiamonds as Fiducial Markers for Microscopy

The invention relates to fluorescent nanodiamonds (FNDs) and their uses as fiducial markers for microscopy. FNDs are bright fluorescent probes that do not blink or bleach and have broad fluorescence excitation and emission peaks. The fluorescence intensity can be readily controlled by the size of the FND, the number of fluorescent centers produced in the nanodiamonds, or in situ through the application of a weak magnetic field.

Clones Encoding Mammalian ADP-Ribosylarginine Hydrolases

ADP-ribosylation of arginine residues in proteins may be involved in cell adhesion and is crucial for the action of cholera toxin and E. coli heat-labile enterotoxin, agents involved in the pathogenesis of cholera and traveller's diarrhoea, respectively. ADP-ribosylation is reversed by ADP-ribosylarginine hydrolases, which cleave the ADP-ribose-arginine bond. ADP-ribosylarginine hydrolases from a variety of mammalian species and tissues were isolated, and the coding regions for the hydrolases were cloned and expressed.

Methods of Screening for Risk of Cancer Using Human Lactoferrin DNA Probe or Primer

While normal breast ductal epithelium and neutrophilic granulocytes contain lactoferrin, their malignant counterparts frequently do not. The NIH announces primers or probes corresponding to the human lactoferrin gene, its promoter region, and its protein product, obtained from human breast tissue. The lactoferrin primer or probes can be used to screen for malignancy arising from tissues that normally secrete lactoferrin, or as a test to check the recovery of a patient from a malignancy.

Methods and Materials for Controlling Stem Cell and Cancer Cell Proliferation and Differentiation

This work describes a novel nucleolar mechanism that controls the cell-cycle progression in CNS stem cells and cancer cells. The inventors identified a novel peptide, nucleostemin, found in the nucleoli of CNS stem cells, embryonic stem cells, and several cancer cell lines and preferentially expressed by other stem cell-enriched populations. When stem cells differentiate, nucleostemin expression decreases rapidly prior to cell-cycle exit both in vitro and in vivo. Depletion or overexpression of nucleostemin reduces cell proliferation in CNS stem cells and transformed cells.