Chimeric Reporter West Nile/Dengue Viruses and Their Use for Assay Development

CDC researchers have engineered West Nile/dengue virus (WN/DENV) chimeras utilizing the replicative ability of the West Nile (WN) virus but presenting the immunogenic pre-membrane and envelope surface proteins of each of the four dengue virus serotypes (DENV 1-4). When coupled with a fluorescent reporter gene, each chimera is able to generate live chimeric reporter WN/DENV (R-WN/DENV) expressing the fluorescent protein in infected cells. These chimeric reporter viruses (CRVs) are used to develop faster and less hands-on high throughput neutralization assays for DENV.

TRIAZOLE DERIVATIVES AS P2Y14 RECEPTOR ANTAGONISTS

The technology describes the composition of small molecule compounds that are antagonists of the P2Y14 receptor. Also provided are methods of using the compounds, including a method of treating a disorder, such as inflammation, diabetes, insulin resistance, hyperglycemia, a lipid disorder, obesity, a condition associated with metabolic syndrome, and asthma, and a method of antagonizing P2Y14 receptor activity in a cell.

P2Y14 Receptor Antagonists Containing A Biaryl Core

The technology discloses composition of compounds that fully antagonize the human P2Y14 receptor, with moderate affinity with insignificant antagonism of other P2Y receptors. Therefore, they are highly selective P2Y14 receptor antagonists. Even though there is no P2Y14 receptor modulators in clinical use currently, selective P2Y14 receptor antagonists are sought as potential therapeutic treatments for asthma, cystic fibrosis, inflammation and possibly diabetes and neurodegeneration.

A Highly Efficient Astrocyte Differentiation Protocol for Human Pluripotent Stem Cells

This technology includes a robust and highly efficient protocol that differentiates induced pluripotent stem cells (iPSCs) exclusively into nociceptors (also called sensory neurons) under chemically defined conditions. The use of hPSCs, including hESCs and iPSCs, holds great promise for disease modeling, drug discovery, and cell therapy. However, efficient and highly reproducible protocols have not been developed for most cell types that are relevant and urgently needed for translational applications.

A Highly Efficient Nociceptor Differentiation Protocol for Human Pluripotent Stem Cells

This technology includes a robust and highly efficient protocol that differentiates human pluripotent stem cells (hPSCs) exclusively into nociceptors (also called sensory neurons) under chemically defined conditions. The use of hPSCs, including hESCs and iPSCs, holds great promise for drug screening, disease modeling, toxicology, and regenerative medicine. However, efficient and highly reproducible protocols have not been developed for most cell types that are relevant and urgently needed for translational applications.

A Highly Efficient Differentiation Protocol for Placental Cells Derived from Human Pluripotent Stem Cells

This technology includes a robust and highly efficient protocol that differentiates human pluripotent stem cells (hPSCs) into the developmental precursor of placental cells, the trophectoderm (TE), under chemically defined conditions. The in vitro generation of TE cells holds great promise for modeling diseases of the placenta, drug screening, and cell-based therapies.

A High-throughput Protocol for Creation of Brain Region-specific Neural Spheroids for Disease Modeling and Drug Testing

This technology includes a method for creating functional, brain region-specific neural spheroids that can be used for disease modeling and therapeutic testing of compounds for neurological diseases. The developed protocol uses somatic cells, including iPSC-derived neurons, as well as astrocytes using means such as 96- or 384-well ultra-low attachment round-bottom plates. Spheroids have been generated using this method that model brain regions such as the ventral tegmental area and prefrontal cortex, which are implicated in Parkinson’s and Alzheimer’s disease.

APLS Method to Screen Libraries by Multiplex Gene Expression

This technology includes the use of the Anneal-Pool-Ligate-Sequence method (APLS) to quantify the cellular expression of dozens of genes for high throughput chemical library screening. This method is performed by culturing eucaryotic cells in 384-well format microplates, treating the cells with a library of chemicals, and producing cell lysates. Oligodeoxynucleotide (oligo) pairs representing (21) selected genes, and carrying index sequences for each well (384) and microplate (26), are annealed to mRNAs in cell lysates.