Multiview Super-resolution Microscopy System and Methods for Research and Diagnostic Applications

This technology includes a microscopy technique that combines the strengths of multiview imaging (better resolution isotropy, better depth penetration) with resolution-improving structured illumination microscopy (SIM). The proposed microscope uses a sharp line-focused illumination structure to excite and confocally detect sample fluorescence from 3 complementary views.

Fluorescence Scanning System for Improvement of Analytical Ultracentrifugation

This technology includes improvements in the fluorescence scanner to increase efficiency. This method works by eliminating the need to radially slide the optical assembly during scanning, instead using a galvanometric mirror deflecting a laser beam to different positions in the sample. This allows the scanner to be incorporated into existing commercial analytical ultracentrifugation (AUC) systems with minimal modifications.

Improvement of Axial Resolution via Photoswitching and Standing Wave Illumination

This technology includes an illuminator and reflector that enables flexible standing wave illumination on an inverted microscope stand, and procedures for using such illumination to improve axial resolution in confocal or instant SIM imaging systems. The axial resolution in conventional fluorescence microscopy is typically limited by diffraction to ~700 nm. This method that improves axial resolution ~7-fold over the diffraction limit, and that can be applied to any fluorescence microscope.

Accelerating Multiview Registration and Iterative Deconvolution to Improve Spatial Resolution and Contrast in Fluorescence Microscopy

This technology includes algorithms and software that improve the speed of iterative deconvolution, a common method for improving spatial resolution and contrast in fluorescence microscopy images. These algorithms also improve the registration of multiview datasets, and apply deep learning to accelerate spatially varying deconvolution.

PET Imaging of lntegrin Expression with Suitably Labeled RGD Peptides for Multiple Diagnostic Purposes

This technology includes a number of dimeric RGD peptides which been developed and labeled with various PET isotopes (1BF, 68Ga, and 64Cu) for imaging integrin expression in cancer, inflammation, rheumatoid arthritis, myocardial infarct, stroke and traumatic injury. A number of these peptides have been translated into clinic for diagnosis and therapy response monitoring.

Development of High-Throughput ELISA Based Binding Assays to Detect p53/p63/p73 Family Protein-DNA Interaction in the 96-well Microplate Format for Drug Screening and Other Clinical and Diagnostic Uses

This technology includes ELISA based binding assays of p53, p63 or p73 provide possibilities to validate genome sequencing results, and allow the performance of more in-depth investigation to address scientific mechanisms, as well as to develop applications for high-throughput clinical and diagnosis usages. While quantitative p53 binding assays have been commercially developed, there is a lack of high-throughput method to detect binding activity of all three p53/p63/p73 family members, which are an important step for these transcription factors to perform their function.

Paper Strip Tool with Gold Nanoparticle Conjugated Probes for Rapid Detection of Pathogens in Stool

This technology includes a paper strip tool that may be used at the point-of care to detect the presence of a multiplex of pathogen nucleic acid sequences in stool without the need for molecular amplification, laboratory or instrumentation. This invention can be used to rapidly and inexpensively detect gastrointestinal and diarrheal disease in order to guide treatment.

Isotopes of Alpha Ketoglutarate and Related Compounds for Hyperpolarized MRI Imaging

This technology includes 1-13C-ketoglutarate which can be used for imaging the conversion to hydroxyglutarate (HG) or Gln in cancer cells with an IDH1 mutations by hyperpolarized MRI. The ability to detect the status of IDH1 mutations is clinically prognostic for multiple cancers. These exciting observations are limited by two factors, the major one being that the natural abundance of 13C at position C5 overlaps with 1-13C-2-hydroxyglutarate peak, which limits the sensitivity of analysis and prevents simultaneous observations of HG and Gln formation.

Genetic Manipulation of Natural Killer Cells to Express c-MPL Growth Factor Receptor as a Therapy for Cancer

This technology includes genetic manipulation of natural killer (NK) cells to express thrombopoietin receptor (c-MPL) growth factor receptor as strategy to augment NK cell proliferation and anti-tumor immunity. Many investigational adoptive immunotherapy regimens utilizing NK cells require the administration of IL-2 or IL-15 cytokines to support the survival and function of the cells in patients, however administration of these cytokines causes a number of serious dose-dependent toxicities.

Novel Bicuspid Transcatheter Heart Valve Frame and Leaflets for Mitro Valve Implantation

This technology includes a pair of subsystems for a novel transcatheter bicuspid valve (frame and leaflets) intended for implantation in the mitral position. It is simple, it overcomes key limitations to transcatheter bicuspid mitral valve implants, and it overcomes key limitations to transcatheter tricuspid mitral valve implants.