Helical Guidewires and Related Systems for Transcatheter Heart Valve Procedures

This technology includes a guidewire purpose-built for delivery of bulky transcatheter heart valves (THV). Conventional THV guidewires are rigid and have a distal tip shaped like a pigtail to prevent apical ventricular perforation. This invention is a 3-dimensional helical or antihelical curve that can protect against apical perforation, possibly better, and that allows subtle 3-mensional deflection to aid the operator in achieving coaxiality or overcoming delivery obstacles such as calcific spicules.

A Method to Guide Protocol Development for Magnetic Resonance Thermometry

This technology includes tools to guide optimization of thermometry imaging/post-processing protocols. Proton Resonance Frequency (PRF) thermometry is a widely used Magnetic Resonance Imaging (MRI) based technique to monitor changes in tissue temperature in response to thermal therapy. The use of PRF thermometry with thermal therapy procedures is indispensable to ensure delivery of desired thermal dose to the target tissue, and to minimize unintended damage to the normal tissue.

Device for Closure of Transvascular or Transcameral Access Ports

This technology includes a novel method to access the arterial circulation to allow introduction of large devices, such as transcatheter aortic valve replacement, percutaneous left ventricular assist devices, and thoracic aortic endografts. It also can be used in most labeled and off-label applications of Amplatzer nitinol occluder devices to occlude intracardiac holes and to allow non-surgical direct access to the heart. This new disclosure adds additional design features that have been tested in vivo.

3D Bioprinting of Cardiac Patch with Anisotropic and Perfusable Architecture for the Repair of Damaged Cardiac Muscle

This technology includes a novel cardiac patch which was 3D printed to repair damaged cardiac tissue. Based on biological and anatomical understanding of myocardial tissue, a novel 3D bioprinting technique was developed to directly fabricate the cellularized and vascularized cardiac patch with anisotropic fiber and perfusable vessel architecture. The design will integrate biomimetic aligned myocardial fibers and perfusable blood vessels to create a thick, functional cardiac patch, suitable for the human heart implantation.

Background-free Imaging by Selective Modulation of Nanodiamond Fluorescence Using a Magnetic Field

This technology includes the use of nanodiamonds to achieve background-free imaging. We present several techniques to reduce or eliminate background florescence by exploiting properties of the fluorescent nanodiamonds. In particular, magnetic field modulation of the fluorescence intensity offers a simple, robust, and easily adaptable method to obtain background free imaging in a variety of imaging modalities, i.e., fluorescence microscopy and wide field fluorescence animal imaging.

Electronic Fringe Scanning for the Improvement of Medical Imaging Technology

This technology includes an electronic method for fringe scanning in grating-based phase-contrast imaging, which enhances x-ray phase-contrast imaging. Traditional methods use high-density gratings and require fine grating fringes, finer than the detector's resolution, necessitating fringe scanning to obtain phase-contrast information. This process typically involves complex and precise movements of a grating for each image, challenging in applications like medical computed tomography that demand rapid gantry rotation and acquisition of numerous projection images in less than a second.

An Automated System for Myocardial Perfusion Mapping and Machine Diagnosis to Detect Ischemic Heart Disease with First-pass Perfusion Cardiac Magnetic Resonance Imaging

This technology includes a fully automated computer aided diagnosis system to quantify myocardial blood flow (MBF) and myocardial perfusion reserve (MPR) pixel maps from the first-pass contrast-enhanced cardiac magnetic resonance (CMR) perfusion images. This system performs automated image registration, motion compensation, segmentation, and modeling to extract quantitative features from different myocardial regions of interest.

Bivalent Tn5 Complex and its Application to Map Enhancer-Promoter Interactions for Use in Diagnostics

This technology includes a new reagent, termed bivalent Tn5 complex, and applied it to mapping genome-wide enhancer-promoter interactions to be utilized for disease diagnostics. Chromatin structure is critical for regulating transcription in normal development and disease states. In particular, the interaction between enhancers and promotes are essential for the temporospatial control of gene expression.

Transcatheter MRI-guided Implantable Cavopulmonary Bypass Endograft for the Treatment of Congenital Heart Disease

This technology includes a catheter-delivered endograft designed to treat congenital heart disease without surgery. The specific surgical procedure averted is cavopulmonary bypass graft. The key innovations are features to effect distal end-to-side anastomosis and proximal end-to-end anastomosis without surgery. The system operates under X-ray and MRI guidance.

Resolution Doubling with Digital Confocal Microscopy

This technology includes a microscopy method that reduces the speed penalty at least 1000-fold, while retaining resolution improvement. A Digital mirror device (DMD) or sweptfield confocal unit is used to create hundreds to thousands of excitation foci that are imaged to a sample mounted in a conventional microscope and record the resulting emissions on an array detector. Detection of each confocal spot is done in our proprietary software, as is the processing and deconvolution that is used for a 2x resolution enhancement.