Antibody to Mitochondrial Uniporter (MCU

This technology includes a generated polyclonal antibody in rabbit that detects the mitochondrial uniporter (MCU) protein. This antibody was created by immunizing rabbits with a synthesized sequence of the MCU protein and can be used to identify and quantify MCU protein in various tissues. The polyclonal nature of the antibody ensures it recognizes multiple epitopes on the MCU, enhancing detection reliability. This technology is crucial for understanding MCU's role in mitochondrial function and mammalian physiology.

Immunogens, Compositions, and Methods for the Treatment of Dyslipidemia

This technology includes a novel vaccine for forming autoantibodies against apoC-III, a plasma enzyme that inhibits lipolysis. The vaccine can possibly be used to treat patients with high triglycerides and are at risk for pancreatitis and cardiovascular disease. This disclosure describes an ApoC3 immunogen that includes an antigenicApoC3 peptide linked to a bacteriophage virus-like-particle (VLP) immunogenic carrier.

Antibody Targeting of Cell Surface Deposited Complement Protein C3d as a Treatment for Cancer

This technology includes monoclonal antibodies (mAb) that specifically and with high affinity bind the final complement components C3dg and C3d (subsequently referred to as C3d), which can be used to kill tumor cells that carry C3d on their cell surface. We show that tumor cells of patients treated with the therapeutic anti-CD20 mAb ofatumumab carry C3d on the cell surface and can bind and be killed by addition of anti-C3 mAbs. In contrast, further addition of more ofatumumab has only minimal effects.

Intranasal or Inhaled Delivery of a Custom IgA Antibody for Protection Against COVID-19

This technology includes an IgA antibody, specifically designed to target the receptor binding domain of SARS-CoV-2, the virus causing COVID-19. Administered intranasally, this antibody has potential neutralizing activity, aiming to prevent COVID-19. IgA, an antibody class present in mucosal areas, plays a crucial role in immune defense at the initial site of viral infection. The primary application of this technology is envisioned as a therapeutic nasal spray, intended to prevent SARS-CoV-2 infection, particularly in high-risk populations.

Antibodies to TMC1 Protein for Hearing Loss

This technology includes antibodies for TMC1 protein as a treatment for hearing loss. TMC1 is one of the common genes causing hereditary hearing loss. Our laboratory used synthetic peptides corresponding to the TMC1 protein to immunize rabbits. The resulting antisera were shown to bind to TMC1 protein expressed in heterologous expression systems. TMC1 protein is required for the transduction of sound into electrical impulses in inner ear sensory cells.

Affinity Purified Polyclonal Antibody Against Vangl2 (Van Gogh-like) as a Research Tool Product

This technology includes an antibody that enables the identification and isolation of the protein and protein partners of Vangl2 for application by western blotting, immunoprecipitation and immunocytochemistry. Because planar cell polarity signaling disruption leads to direct or indirect pathologies including malformation of the neural tube, mental retardation, disruption of sensory functions (hearing, balance, vision), cancers (polykystic kidneys disease), or cardiac

A BL21 (ED3) Codon Plus Competent Cell-derived Bacterial Strain for Research Use

This technology includes a bacterial strain derived from BL21 (ED3) CodonPlus Competent Cells containing an expression vector for human POLR2C gene for research purposes. The bacterial strain can be used to produce the full-length human RNA polymerase II subunit, RPB3 protein, which can be in turn isolated and purified.

Cytochrome P450 CYP2J Polyclonal Antibodies and Recombinant Proteins for Immunoblotting and Metabolism Studies

This technology includes identified members of the mouse cytochromes P450 CYP2J subfamily and antibodies to them for P450 expression studies and metabolism research. Recombinant proteins of the CYP2J subfamily members have also been expressed. The CYP2J subfamily members have a wide tissue distribution and may be useful as model systems for studies of cardiovascular disease, drug metabolism, and toxicity.

Human Monoclonal Antibodies to Generate Chimeric Antigen Receptor (CAR) T-cells to Treat Patients with Advanced Clear Cell Renal Cell Carcinoma (ccRCC).

This technology includes six human monoclonal antibodies (mAbs) that target tumor antigens derived from the CT-RCC HERV-E (human endogenous retrovirus type E) to generate Chimeric Antigen Receptor (CAR) T cells to treat patients with advanced clear cell renal cell carcinoma (ccRCC). These mAbs were identified from Adagene Inc’s human antibody phage library, and data show that majority of these mAbs only bind to CT-RCC HERV-E+ ccRCC cells, which express TM but not CT-RCC HERV-E non-expressing ccRCC cells nor non-RCC cells.