Inhibition of T Cell Differentiation and Senescence by Overexpression of Transcription Factor c-Myb

Adoptive Cell Therapy (ACT) is a promising technique that uses a patient's own T cells to treat cancer. The process requires removing and engineering a patient's T cells to express a chimeric antigen receptor (CAR) or T cell receptor (TCR) that targets a specific cancer antigen. When the modified T cells are reintroduced into the patient, the T cells attack and kill cancer cells that express the antigen, thereby treating the patient.

Novel Fixative for Improved Biomolecule Quality from Paraffin-Embedded Tissue

Tissues samples collected during medical procedures, such as biopsies, are used to diagnose a wide variety of diseases. Before diagnosis, patient samples are typically processed by fixation and paraffin embedding. This fixation/embedding process is used to preserve tissue morphology and histology for subsequent evaluation. Unfortunately, most fixative agents can damage or destroy nucleic acids (RNA and DNA) and damage proteins during the fixation process, thereby potentially impairing diagnostic assessment of tissue.

In vitro Generation of an Autologous Thymic Organoid from Human Pluripotent Stem Cells

The thymus is an integral part of the adaptive immune system as it generates T cells. Its function diminishes rapidly as the body ages, leading to a compromise of the immune system in the elderly. Reconstitution of adaptive immunity through mass production of different T cell types is therefore a therapeutic need in immunocompromised populations. Furthermore, production of T cells with specific receptors targeting cancer cells is an important cancer immunotherapy approach.

A peptide hydrogel for use in vascular anastomosis

In collaboration with surgery specialists from Johns Hopkins University, researchers at the National Cancer Institute (NCI) developed novel hydrogel compositions and methods of using them in the microsurgical suturing of blood vessels, which is particularly beneficial for surgeons in whole tissue transplant procedures. The lead candidate electropositive hydrogels, called APC1, was demonstrated in anastomosis mice models to be well tolerated, biocompatible, and non-toxic.

89Zr-Oxine Complex for In Vivo PET Imaging of Labelled Cells and Associated Methods

This technology from the NCI Molecular Imaging Program relates to a Zirconium-89 (89Zr)-oxine complex for cell labeling, tracking of labeled cells by whole-body positron emission tomography/computed tomography (PET/CT) imaging, and associated methods. A long half-life of 89Zr (78.4 hours), high sensitivity of PET, and absence of background signal in the recipient enable tracking cells over a week using low levels of labeling radioactivity without causing cellular toxicity.

Renal Selective Unsaturated Englerin Analogues

Englerin A, a natural product, has shown growth-inhibiting activity against renal cancer cell lines. The compound is an agonist of protein kinase C (PCK) theta, which results in cell cytotoxicity, insulin inhibition, and selective activation of viral replication in T cells.  Englerin A derivatives are promising treatment strategies for any diseases associated with PKC theta and/or ion channel proteins.

Size-dependent brain distribution of macromolecular drug delivery platform

The blood brain barrier (BBB) is a specialized endothelium that prevents the uptake of substances from the systemic circulation into the central nervous system. This barrier, while protecting the sensitive physiological environment of the brain, is also a major impediment in administering therapeutics that need to pass through the BBB. A drug delivery platform that could deliver therapeutic agents directly to the brain is needed, and could have wide ranging significance in a variety of psychiatric, oncology, infectious, and neurodegenerative diseases.

Denoising of Dynamic Magnetic Resonance Spectroscopic Imaging Using Low Rank Approximations in the Kinetic Domain

Accurate measurement of low metabolite concentrations produced by medically important enzymes is commonly obscured by noise during magnetic resonance imaging (MRI). Measuring the turnover rate of low-level metabolites can directly quantify the activity of enzymes of interest, including possible drug targets in cancer and other diseases. Noise can cause the in vivo signal to fall below the limit of detection. A variety of denoising methods have been proposed to enhance spectroscopic peaks, but still fall short for the detection of low-intensity signals.