Eye Tracking Application in Computer Aided Diagnosis and Image Processing in Radiology

Medical imaging is an important resource for early diagnostic, detection, and effective treatment of cancers. However, the screening and review processes for radiologists have been shown to overlook a certain percentage of potentially cancerous image features. Such review errors may result in misdiagnosis and failure to identify tumors. These errors result from human fallibility, fatigue, and from the complexity of visual search required.

High-Throughput Generation of Induced Pluripotent Stem Cells Carrying Antigen-Specific T Cell Receptors from Tumor Infiltrated Lymphocytes

One form of adoptive T cell therapy (ACT) consists of harvesting tumor infiltrating lymphocytes (TIL), screening and isolating TIL which display tumor antigen-specific T-cell receptors (TCR), expanding the isolated T cells in vitro, and reinfusing them into the patient for treatment. While highly active in the treatment of certain cancers (e.g., melanoma), current methods used to produce cancer-reactive T cells require significant time and may not adequately identify the desired TCRs which bind cancer targets.

Chimeric Antigen Receptor (CAR) that Targets Chemokine Receptor CCR4 and its Use in Treating Cancer

The chemokine receptor, CCR4 is a seven transmembrane G protein-coupled cell surface receptor molecule with selective expression on cells of the hematopoietic system. In adult T cell leukemia (ATL), the cell-surface expression of CCR4 on leukemic cells has been found to be nearly universal. Therefore, a CCR4-directed chimeric antigen receptor (CAR) -cell may provide an effective therapeutic against ATL.

IL7Rα-Specific Antibody for Treating Acute Lymphoblastic Leukemia (ALL)

Acute lymphoblastic leukemia (ALL) is the most common cancer in children with approximately 3,250 new cases occurring per year in the United States. About 20% of cases are refractory to current treatment protocols and there is a desperate need for targeted therapies that do not result in adverse side effects such as cognitive impairment. 

Methods of preventing tissue ischemia

The National Cancer Institute's Laboratory of Pathology is seeking statements of capability or interest from parties interested in collaborative research to further develop, evaluate, or commercialize therapeutics targeting vasodialation.

Nitric oxide (NO) plays an important role as a major intrinsic vasodilator, and increases blood flow to tissues and organs. Disruption of this process leads to peripheral vascular disease, ischemic heart disease, stroke, vascular insufficiency associated with diabetes, and many more diseases that are significant.

A Dendritic Cell Vaccine to Immunize Cancer Patients Against Mutated Neoantigens Expressed by the Autologous Cancer

Vaccines against non-viral cancers target mainly differentiation antigens, cancer testis antigens, and overexpressed antigens.  One common feature to these antigens is their presence in central immunological tolerance. Using these vaccines, T cells underwent depletion of high avidity clones directed against such antigens. This depletion can cause the loss of T cells bearing high affinity T cell receptors (TCRs) for their cognate antigens which have superior cytotoxic capacity, longer persistence in the tumor microenvironment, and decreased susceptibility to immune suppression.

Enhanced Cancer Chemotherapy Using the Bioactive Peptide Recifin And Its Analogues

Topoisomerase enzymes play an important role in cancer progression by controlling changes in DNA structure through catalyzing the breaking and rejoining of the phosphodiester backbone of DNA strands during the normal cell cycle. Therefore, topoisomerases are important targets for cancer chemotherapy. Many topoisomerase 1 (TOP1) inhibitors such as camptothecin, rinotecan, and topotecan are widely used anti-cancer agents that work by stabilizing the TOP1-DNA cleavage complex.

Synthesis and Characterization of Bismuth Beads for Trans Arterial Chemo Embolization Under Computed Tomography (CT) Guidance

Existing microsphere technologies are used as therapy for certain cancers. The therapy is by way of occlusion, when the microspheres are delivered into blood vessels that feed a tumor. The physical dimensions of the microspheres occlude the blood supply and thus, killing the tumor. Some microspheres have also been modified to bind protein, elute drugs, and reduce inflammatory reactions as part of the therapy. However, one technical short-coming of existing microsphere technology is a limited capability to be visualized in real-time.

Bivalent, Dual Specific Anti-CD22 Anti-CD19 Chimeric Antigen Receptors (CARs)

Chimeric antigen receptors (CARs) combine an antibody-based binding domain (and single chain fragment variable region, scFv) with T cell receptor signaling domains (CD3 zeta with a costimulatory domain, typically CD28 or 41BB). When T cells express CARs, they are activated in a major histocompatibility complex- (MHC) independent manner to kill tumor cells expressing the target to which the scFv binds.  CAR T cells targeting the B cell antigen CD19 have resulted in remissions in 60-80% of patients with pre-B cell precursor acute lymphoblastic leukemia (BCP-ALL).