Immortalized Rhesus macaque Bcl-6/Bcl-xL Stable B Cell Lines as Tools for HIV Antibody Discovery

Scientists at NIAID have developed two immortalized stable B cell lines from rhesus macaques that can have value as research tools for the discovery of neutralizing antibodies of simian origin against HIV and that may have value in the development of an HIV vaccine. These B cell lines encode human Bcl-6 and Bcl-xL proteins, which are major regulators of apoptosis. These B cell lines are derived from the lymph node of a rhesus macaque (RM) that was infected with SHIV.CH505.

TSLP Induces Neutrophil-mediated Killing of Methicillin-resistant Staphylococcus Aureus (MRSA)

This technology includes the use of thymic stromal lymphopoetin (TSLP) for the treatment of MRSA. Our studies show that mouse neutrophils express the TSLP receptor, TSLPR, and that TSLP protein is increased during cutaneous MRSA infection. Using in vitro MRSA whole blood killing assays, we show that TSLP acts on mouse neutrophils to enhance MRSA killing. In an in vivo MRSA intradermal ear infection, TSLPR-deficient mice exhibit increased MRSA burden compared to wild-type mice.

Prazoles as Potential Broad Spectrum Anti-viral Agents

The technology described involves the use of a compound called prazole as an anti-viral agent specifically targeting HIV-1. It was found that prazole binds to a protein called Tsg101, which is crucial for the virus's life cycle. This binding disrupts the normal interaction of Tsg101 with another protein, ubiquitin, thereby inhibiting the release of HIV-1 particles from infected cells. Additionally, the interference caused by prazole leads to the degradation of the viral protein Gag within host cells.

Intranasal or Inhaled Delivery of a Custom IgA Antibody for Protection Against COVID-19

This technology includes an IgA antibody, specifically designed to target the receptor binding domain of SARS-CoV-2, the virus causing COVID-19. Administered intranasally, this antibody has potential neutralizing activity, aiming to prevent COVID-19. IgA, an antibody class present in mucosal areas, plays a crucial role in immune defense at the initial site of viral infection. The primary application of this technology is envisioned as a therapeutic nasal spray, intended to prevent SARS-CoV-2 infection, particularly in high-risk populations.

SARS-CoV-2 Neutralizing Nanobodies for Therapeutic and Diagnostic Uses

This technology involves the utilization of highly effective nanobodies, specifically camelid antibodies, derived from immunized llamas to neutralize SARS-CoV-2. Additionally, it employs a unique mouse model, called a "nanomouse," that is engineered to express antibody genes from camels, alpacas, and dromedaries. These nanobodies offer significant advantages over traditional human and mouse antibodies due to their smaller size, which allows them to effectively target and bind to specific areas on antigens.

A Novel Therapy/Companion Diagnostic (BAM15 And mtDNA) for Sepsis and Sepsis-induced Acute Kidney Injury

This technology includes a therapy and companion diagnostic which can be used for the early diagnosis and treatment of sepsis and sepsis-induced acute kidney injury (AKI). Mitochondrial damage plays a key role in sepsis-induced acute kidney injury BAM15 [2-ftuorophenyl){6-[(2- fluorophenyl)am ino]{1 ,2,5-oxadiazolo[3,4-e]pyrazin-5-yl)}amine] is a mitochondrial uncoupler that protects mitochondria with more specificity and less cytotoxicity than other uncouplers. Mitochondrial DNA (mtDNA) is a damage associated molecular pattern that is increased in human sepsis.

Identification of a Novel Parvovirus for Vaccine Development and Use as a Diagnostic Tool

This technology includes a procedure for novel virus identification in a variety of human specimens by solexa high-throughput sequencing, which allows for the screening a large number of clinical specimens for novel virus discovery in a highly efficient and relatively economical method. By using this technique, we have successfully identified a novel parvovirus from samples of seronegative hepatitis patients.

Infectious Clone of Human Parvovirus B19 and Methods of Use

This technology described in this patent application relates the first reported infectious human parvovirus B19 clone, methods of cloning the parvovirus B19 genome as well as other viral genomes that have secondary DNA structures that are unstable in bacterial cells. The infectious clone and methods of producing the same would be useful in producing infectious virus, which can in turn be used, among other things, to identify and develop therapeutic agents for treatment and/or prevention of human parvovirus B19 infections. The infectious parvovirus B19 clone is also available for licensing.