Parvovirus B19 Receptor And Parvovirus B19 Detection

The claimed invention provides a method of detecting the presence of a parvovirus in a sample. Parvoviruses infect animals and man. In man, the only known pathogenic member of this family is parvovirus B19. The inventors have identified the parvovirus B19 receptor which provides for a method to diagnose, prevent, and treat parvovirus infection utilizing the binding affinity for the receptor.

Viral Entry or Replication Inhibitors

The Tec family of tyrosine kinases, consisting of five family members Tec, Btk, Itk, Rlk, and BMX, are key regulators of signaling pathways of T lymphocytes. Many existing antiviral therapies rely on inhibition of viral replication, which leads to emergence or selection of resistant viruses. The current technology provides an alternative method for prevention or treatment of viral infection through administration of a Tec tyrosine kinase inhibitor. Such inhibitors can be siRNA, small chemical compounds, antisense or antibody.

Methods for Prevention and Treatment of Polyomavirus Infection or Reactivation

Available for licensing and commercial development are methods of using two MAP kinase kinase (MEK) inhibitors, PD98059 and U0126, in the prevention and treatment of polyomavirus infection. Decrease in viral protein expression upon treatment with the MEK inhibitors has been demonstrated for two polyomavirus species, JC virus (JCV) and BK virus (BKV). It is believed that these MEK inhibitors may also be effective against other polyomavirus species in which TGF-beta expression is elevated.

Probe Set Global Optimization

Available for licensing and commercial development are methods to optimize sequence-based assays such as microarrays, multiplexed PCR or multiplexed antibody methods. This computational method uses numerical optimization to identify an optimal probe set to be used in an assay for the measurement of a specified set of targets. The method incorporates the sequence information of the target (protein, DNA, RNA or other polymer), the assay characteristics, limits on probe set size and assay probe length in its optimization.

Methods for Prevention and Treatment of Polyomavirus Infection or Reactivation (E-179-2007)

Available for licensing and commercial development are methods of using Tranilast [N-(3',4'-dimethoxycinnamoyl)anthranilic acid] in the prevention and treatment of human polyomavirus infection. Treatment with Tranilast decreases viral protein expression for two human polyomavirus species, JC virus (JCV) and BK virus (BKV). Furthermore, the increase in JCV/BKV protein production observed upon the addition of TGF-beta could also be effectively abolished by Tranilast co-treatment.

Treatment of Viral Infection by Blocking Interleukin-21

Blocking interleukin (IL-21) may be an effective method to treat or prevent various viral infections. In the course of an immune response to a virus, IL-21, produced primarily by CD4+ T cells, can inhibit or stimulate (regulate), immune cell function (B cells, T cells, natural killer cells, dendritic cells). IL-21 regulation may be either protective or pathological; autoimmune disease pathology has been associated with IL-21 promoted inflammation (in: type 1 diabetes, lupus, and multiple sclerosis).

Isolated Lyssavirus Nucleic Acid and Protein Sequences

A novel strain in the rabies family of viruses, the Shimoni bat virus (SHIBV), has been discovered. Phylogenic and antigenic patterns identify SHIBV as a new species of Lyssavirus. Phylogenic reconstructions of SHIBV and monoclonal antibody typing were used to demonstrate a distinct genetic antigenic pattern. This unique genetic information may be used to create antigens or vaccines against SHIBV and provides opportunity for the development of new diagnostics, therapeutics, and prophylactic therapies for viral infection.

Immunogenic Hepatitis E Virus Polypeptides for Vaccine and Diagnostics Development

This technology comprises specific hepatitis E virus (HEV) antigenic polypeptides. HEV causes epidemic and sporadic cases of hepatitis outbreaks with a mortality rate as high as 20% for pregnant women. In order to address this problem, CDC scientists carried out thorough HEV antigen screenings and subsequently developed recombinant proteins that efficiently model major HEV neutralization epitope(s). These recombinant proteins may be considered as candidates for the development of an HEV subunit vaccine, as well as for the development of highly sensitive and specific diagnostic tests.

Real-time PCR Assays for Human Bocavirus Detection and Diagnosis

CDC researchers have developed a real-time PCR assay for the detection and viral-load quantitative estimations of human bocavirus (HBoV) from clinical specimens. At present, there have been few reports on the epidemiology, geographic distribution or clinical features of HBoV infection. Additionally, symptoms affiliated with bocavirus infections overlap with numerous other respiratory illnesses. This CDC assay provides sensitive, specific, and quantitative detection of HBoV in patients with respiratory illness by a method of real-time PCR targeting the HBoV NS1 and NP-1 genes.

Detection of Retroviruses and HIV-1 Groups -M and -O Discrimination within Clinical Serum Samples

CDC researchers have developed methods for detecting retroviruses within a patient blood sample and discriminating HIV-1 samples within serum specimens. HIV-1 can be genetically classified into two major groups, group M (major) and Group O (outlier) with group O comprising all divergent viruses that do not cluster with group M. The identification of group O infections raised public health concerns about the safety of the blood supply because HIV-1 screening by group M-based serologic tests does not consistently detect group O infection.