A Triple Combination HIV Microbicide

The HIV-positive population continues to rise despite a worldwide decline in the rates of infection caused by human immunodeficiency virus (HIV).  The HIV virus continues to spread due to a lack of effective vaccines and pre-exposure prophylaxis methods, even though the availability and effectiveness of antiretroviral therapy has helped reduce acquired immunodeficiency syndrome (AIDS)-related deaths. 

Novel Fusion Proteins for HIV Vaccine

Development of successful HIV vaccine immunogens continues to be a major challenge.  Although gp120 was identified as having significant potential as a vaccine immunogen, attempts to elicit broadly neutralizing antibodies using recombinant gp120 failed.  The highly flexible gp120 may present numerous conformations to the humoral immune system that are not found on the viral spike.

Polymer-Cast Inserts for Cell Histology and Microscopy

Three-dimensional (3D) cell cultures systems are important for studying cell biology because they provide in vivo-like microenvironments more physiologically relevant than two-dimensional (2D) culture systems. In 3D culture systems, cells are grown in culture matrixes and turn into spheroids and organoids later processed for downstream analysis by microscopy and histology techniques. The processing of 3D cultures for analysis by microscopy or histology is laborious and time-consuming due to incompatibility of the 3D culture vessels and the microscopy and pathology blocks.

Immunogens for Use in a High Efficacy HIV Vaccine

Human immunodeficiency virus (HIV) infections remain a pandemic, most prevalent in Africa and the Americas. Anti-retroviral treatments have been effective in preventing spread of the virus and active outbreaks of acquired immune deficiency syndrome (AIDS). However, the development and deployment of an effective vaccine would provide long-lasting protection and alleviate the need to depend heavily on prevention methods that require continued access and adherence.

Camel VHH Nanobodies Bind the S2 Subunit of SARS-CoV-2 and Broadly Neutralize Variants including Omicron

Since its emergence in 2019, COVID-19 infected over 600 million people and over 6 million people have died from the disease. COVID-19 is an infectious disease caused by the SARS-CoV-2 virus. Neutralizing antibodies have been developed to bind to the receptor binding domain (RBD) on the spike (S) protein. Blocking the interaction of the RBD and the ACE2 receptor, is critical in neutralizing the virus. However, the S2 subunit, is also critical for viral infection and entry into human cells.

T-cell Phenotypes Associated with Clinical Response to Adoptive Immunotherapy

Adoptive T-cell therapy (ACT) utilizes tumor-reactive T cells to induce disease remission. While ACT has been used effectively to treat metastatic melanoma and certain epithelial cancers, most patients do not respond to treatment. Although the mechanisms underlying this variable response to therapy are not fully elucidated, the phenotype of the adoptively transferred cell is known to be a key determinant of treatment efficacy.

Enhanced Immunogenicity Against HIV-1 Using a DNA-prime Poxvirus Vaccination

Researchers at the National Cancer Institute (NCI) have developed a method of stimulating an immune response in humans at risk for infection by, or already infected with, an Human Immunodeficiency Virus (HIV)-1 retrovirus. This method utilizes deoxyribonucleic acid (DNA) vaccines to stimulate CD8+ T cell immune responses. The DNA vaccine encodes antigens known to be effective against retroviruses, such as HIV-1gag, gp120, nefCTL, and proCTL. The same antigens are also expressed by the pox virus vaccine, which elicits an increased immune response when combined with the DNA vaccine.