TRIAZOLE DERIVATIVES AS P2Y14 RECEPTOR ANTAGONISTS

The technology describes the composition of small molecule compounds that are antagonists of the P2Y14 receptor. Also provided are methods of using the compounds, including a method of treating a disorder, such as inflammation, diabetes, insulin resistance, hyperglycemia, a lipid disorder, obesity, a condition associated with metabolic syndrome, and asthma, and a method of antagonizing P2Y14 receptor activity in a cell.

P2Y14 Receptor Antagonists Containing A Biaryl Core

The technology discloses composition of compounds that fully antagonize the human P2Y14 receptor, with moderate affinity with insignificant antagonism of other P2Y receptors. Therefore, they are highly selective P2Y14 receptor antagonists. Even though there is no P2Y14 receptor modulators in clinical use currently, selective P2Y14 receptor antagonists are sought as potential therapeutic treatments for asthma, cystic fibrosis, inflammation and possibly diabetes and neurodegeneration.

Stable Human Cell Lines Expressing Flavivirus Virus-Like Particles (VLPs) for Vaccine, Biologics, and Diagnostic Development

Flaviviruses such as Zika virus, dengue virus, West Nile virus, yellow fever virus, and Japanese encephalitis virus cause widespread illness and death throughout the world. Typically, flaviviruses get transmitted through the bite of infected mosquitoes and ticks.

Reducing Bloodstream Neutrophils as a Treatment for Lung Infection and Inflammation

During lung infection, bloodstream neutrophils (PMNs) responding to infection travel to the airspace lumen. Although successful arrival of microbicidal PMNs to the airspace is essential for host defense against inhaled pathogens, excessive accumulation of PMNs in the lung contributes to the pathogenesis of several prevalent lung disorders, including acute lung injury, bronchiectasis, and COPD. Unfortunately, there is no treatment for controlling PMN accumulation in the lung.

Monoclonal Antibodies for Detection of Rabies Virus Antigen and Confirmatory Rabies Diagnosis

According to the World Health Organization (WHO), rabies causes greater than 59,000 deaths every year in over 150 countries as of 2017. A rapid and reliable diagnostic test for rabies is critical for prophylaxis considerations in humans bitten by animals as well as for basic surveillance and animal rabies control programs. The World Organization of Animal Health (OIE) and WHO Expert Committee on Rabies recently approved the direct rapid immunohistochemical test (DRIT) for rabies diagnostics.

Monoclonal Antibody that Detects a Subclass of Dog IgG—for Diagnostic and Research Applications

CDC and collaborating researchers have developed a new monoclonal antibody that recognizes canine IgG (likely IgG4 subclass). This anti-dog IgG reagent could be used to detect antibody reactions to a variety of antigens and has potential use in a wide variety of diagnostic or research applications.

Hybridomas to Human Immunoglobulins for SARS-CoV-2 Diagnostics and Additional Indications

Immunoglobulins play a key role in the immune system. CDC has developed and tested hybridoma cell lines (monoclonal antibody (mAb) clones) for human IgG and other immunoglobulins. The mAbs generated from those hybridomas could be used as a reagent (second Ab) of anti-human immunoglobins in a diagnostic assay for SARS-CoV-2 (severe acute respiratory syndrome coronavirus 2), the virus that causes COVID-19 (coronavirus disease 2019) and other assays that detect antigen specific antibodies from human sera.

Diagnostic Assay to Detect Group C Rotavirus in Humans and Animals—Monoclonal Antibody-based ELISA (Enzyme-linked Immunosorbent Assay)

Rotaviruses cause severe gastroenteritis in humans and animals globally. Currently, there are eight known serogroups (A-H) of rotaviruses. Group C rotavirus (GpC RV) causes sporadic cases and outbreaks of acute diarrhea in children and adults worldwide. GpC RV is also associated with diarrhea in swine. Currently, no simple and reliable diagnostic test exists for GpC RV, so disease prevalence remains unknown.

Development of a Polyclonal Antibody for Neuroligin 4 pThr707 and a Polyclonal Antibody for Neuroligin 1 pTHR739

This invention includes the generation and use of two polyclonal antibodies that specifically recognizes the phosphorylation site pThr707 of Neuroligin 4 and pThr739 of Neuroligin 1. A peptide of the site around the phosphorylation site was generated and injected into rabbits to create an immune response. Serum was collected from the rabbits that was then affinity purified. The specificity of the resulting polyclonal antibodies was then determined using biochemical techniques.

Potentiating Antibody Therapy by Targeting Complement Deposited on Cancer Cells

Monoclonal antibodies (mAbs) have become a mainstay of therapy for many cancers. However, antibody therapy is not completely effective in some applications due to loss of the target surface antigen on cancer cells. Such mAb-induced “escape variants” are no longer sensitive to the therapeutic mAb therapy. It was observed that the escape variants carried covalently bound complement activation fragments, especially C3d. NIH inventors have generated several C3d-specific mouse and rabbit monoclonal antibodies to re-target cells that have escaped from mAb therapy.