Antibodies Against TL1A, a TNF-Family Cytokine, for the Treatment and Diagnosis of Autoimmune Inflammatory Diseases

Autoimmune inflammatory diseases occur in greater than five percent of the United States population; this disease group includes asthma, multiple sclerosis, rheumatoid arthritis, and lupus. Treatments generally include immunosuppressants or anti-inflammatory drugs, which can have serious side effects; recently, more specific immunomodulatory therapies such as TNF-alpha antagonists have been developed.

ARH3, a Therapeutic Target for Cancer, Ischemia, and Inflammation

ADP-ribosylation is important in many cellular processes, including DNA replication and repair, maintenance of genomic stability, telomere dynamics, cell differentiation and proliferation, and necrosis and apoptosis. Poly-ADP-ribose is important in a number of critical physiological processes such as DNA repair, cellular differentiation, and carcinogenesis. Until recently, only one human enzyme, PARG, had been identified that degrades the ADP-ribose polymer.

Hybridoma C4H3, Monoclonal Antibody to a Specific Peptide-MHC Class II Complex

T lymphocytes play an important role in the immune system by recognizing foreign protein motifs on cells. T lymphocytes are stimulated to recognize these motifs through their interactions with peptide-MHC complexes (pMHC). Thus, studying pMHC is an important aspect of understanding how the immune system works, particularly with regard to the development of vaccines. Unfortunately, the detection of pMHC is largely dependent on indirect assays, due to the difficulty of producing antibodies for specific pMHC.

Caspase Inhibitors Useful for the Study of Autoimmune or Inflammatory Diseases

Novel and potent caspase 1 inhibitors are available for licensing. In particular, this technology discloses potent and selective caspase 1 inhibitors that target the active site of the enzyme. Caspase 1 is known to play a pro-inflammatory role in numerous autoimmune and inflammatory diseases and therefore represents an excellent target for treatment of a broad range of diseases, including but not limited to Huntington's, amyotrophic lateral sclerosis, ischemia, rheumatoid arthritis, osteoarthritis, inflammatory bowel disease, and sepsis.

Antigen, Encoding Gene, Related Monoclonal Antibody and Hybridoma Clones for Streptococcus pneumoniae Serological Diagnostics

This CDC developed invention pertains to Streptococcus pneumoniae protein "pneumococcal fimbrial protein A (PfpA)," as well as the encoding pfpA gene. S. pneumoniae linked pneumococcal disease is prevalent among the very young, the elderly and also immunocompromised individuals. This invention covers the breadth of directly PfpA-related technology that might be employed for development of diagnostic tests for S. pneumoniae and/or vaccines directed against the pathogen.

Multi-Antigenic Peptide(s) Vaccine and Immunogen for Conferring Streptococcus pneumoniae Immunity

Disease caused by Streptococcus pneumoniae (pneumococcus) is an important cause of morbidity and mortality in the United States and developing countries. Pneumococcal disease is prevalent among the very young, the elderly and immunocompromised individuals. This invention is an improved, immunogenic peptide construct consisting of a combination of antigenic epitopes of the PsaA (37-kDa) protein from S. pneumoniae.

Methods for the Simultaneous Detection of Multiple Analytes

CDC researchers have developed a method of simultaneously detecting and distinguishing multiple antigens within a biological sample. Epidemiological and vaccine studies require species serotype identification. Current methods of serotyping are labor intensive and can easily give subjective, errant results. This technology utilizes serotype specific antibodies bound to fluorescent beads, allowing for simultaneous single tube capture and detection of multiple antigens in one rapid, high-throughput flow cytometry assay.

Peptide Sequences for Chlamydophila pneumoniae Vaccine and Serological Diagnosis

CDC researchers have isolated select Chlamydophila pneumoniae peptide epitopes for development of vaccines and diagnostic assays. Currently, C. pneumoniae infection of humans has been linked to a wide variety of acute and chronic diseases, such as asthma, endocarditis, atherosclerotic vascular disease, chronic obstructive pulmonary disease, sarcoidosis, reactive arthritis and multiple sclerosis. There is presently no available peptide vaccine for the pathogen and reliable and accurate diagnostic methods are limited.