Identification and Characterization of the Wild Mouse Gut Microbiome as the Optimal Standard for Laboratory Mice

This technology includes identification of the wild mouse microbiome as a method to increase resistance to lethal viral infection. We establish that the gut microbiome of barrier-raised C57BL/6 mice is dysbiotic compared to that of their outbred, wild-living progenitors, Mus musculus domesticus. We find that the multigenerational offspring of pregnant germfree C57BL/6 mice reconstituted with the gut microbiome of wild mice exhibit a less inflammatory response and increased survival following influenza A virus infection.

High-Resolution and Artifact-Free Measurement and Visualization of Tissue Strain by Processing MRI Using a Deep Learning Approach

This technology includes a system for automatic artifact-free measurement and visualization of tissue strain by MRI at native resolution. The investigation of regional soft tissue mechanical strain can serve as a unique indicator for different related disorders. For example, measurement of myocardial tissue during contraction can help calculate, track, and assess cardiac stress. Currently, methods such as tagging MRI (tMRI) are used for imaging soft tissue deformation. Despite being well validated, methods such as tMRI suffer from low spatial and temporal resolution.

Minibody for Conditioning prior to Hematopoietic Stem Cell and Progenitor Cell Transplantation

Patient conditioning is a critical initial step in hematopoietic stem and progenitor cell (HSPC) transplantation procedures to enable marrow engraftment of infused cells. Conditioning regimens have traditionally been achieved by delivering cytotoxic doses of chemotherapeutic agents and radiation. However, these regimens are associated with significant morbidity and mortality, and cannot be used safely in elderly or subjects with comorbidities.

Postnatal Stem Cells and Uses Thereof

Many individuals with ongoing and severe dental problems are faced with the prospect of permanent tooth loss. Examples of such dental problems include: dentinal degradation due to chronic dental disease (caries or periodontal); mouth injury; or through surgical removal, such as with tumors associated with the jaw. For many, a technology that offers a possible alternative to artificial dentures by designing and transplanting a set of living teeth fashioned from an individual's own pulp cells would greatly improve their quality of life.

Oral Treatment of Hemophilia

This invention portrays a simple method for treatment of antigen-deficiency diseases by orally administering to a subject a therapeutically effective amount of the deficient antigen, wherein the antigen is not present in a liposome. This method increases hemostasis in a subject having hemophilia A or B, by orally administering to the hemophiliac a therapeutically effective amount of the appropriate clotting factor, sufficient to induce oral tolerance and supply exogenous clotting factor to the subject.

Application of AAV44.9 Vector in Gene Therapy for the Inner Ear

This technology includes a novel AAV isolate (AAV44.9) to be used as gene therapy for the inner ear for the treatment of deafness. The ability of AAV vectors to transduce dividing and non-dividing cells, establish long-term transgene expression, and the lack of pathogenicity has made them attractive for use in gene therapy applications. Vectors based on new AAV isolates may have different host range and different immunological properties, thus allowing for more efficient transduction in certain cell types.

In-vivo System to Interrogate the Functions of Mucous Membranes and Identify Mucin/Glycan Mimetics and JAK/STAT Inhibitors for the Treatment of Diseases of the Oral Cavity and Digestive Tract

This technology includes a Drosophila mutant strain that can be used as an in vivo model for diseases of the oral cavity and digestive tract (Sjogren's syndrome, colitis, colon cancer, inflammatory bowel disease), where the mucous membrane is disrupted or non-functional. This mutant lacks a mucous membrane and displays epithelial cell damage, uncontrolled cell proliferation and the up-regulation of conserved signaling pathways (JAK/STAT).

Locally Delivered Alkaline Phosphatase for Treatment of Periodontal Disease

This technology includes a product for local delivery of alkaline phosphatase for the treatment of periodontal disease. Our laboratory has discovered that factors regulating phosphate metabolism and specifically the appropriate balance between phosphate (Pi) and pyrophosphate (PPi) at local sites are needed for formation (development), maintenance and regeneration of the tooth root surface (cementum), periodontal ligament (PDL) and surrounding alveolar bone, i.e., the periodontal apparatus.

Methods of Treating or Preventing Pruritis (Itch)

This technology provides a novel method of treating or preventing pruritis (itch) using natriuretic polypeptide b (Nppb) blocking agents. Itch (also known as pruritis) is a sensation that may be perceived as an unpleasant skin irritation and may drive an urge to scratch. Conditions such as, for example, psoriasis, atopic dermatitis, renal failure, liver cirrhosis and some cancers may cause persistent itch. Itch is triggered by somatosensory neurons expressing the ion channel TRPV1 (transient receptor potential cation channel subfamily V member 1).