Handwipe Disclosing Method for Detecting the Presence of Lead

Lead (Pb) exposure can cause serious health concerns including abdominal pain, headaches, loss of appetite, memory loss, weakness, and other symptoms. Lead residues on human skin, especially on the hands of workers can be a significant health risk since such residues may be ingested during normal activities (e.g. eating, drinking, and smoking). A key component to reducing lead exposure is being able to identify areas of lead contamination.

Wipes and Methods for Removal of Lead and Other Metal Contamination from Surfaces

Exposure to lead (Pb) has long posed serious health risks. Ingestion of lead from skin exposure can adversely impact every organ in the body; the kidneys, blood, nervous, and reproductive systems are most affected. Washing skin with soap and water is not sufficient to remove lead residues. To prevent adverse impacts from Pb exposure, exposed individuals need cleaning methods that will effectively remove Pb ions from the skin to less than the limit of identification (i.e., 10 µg or less).

Reducing Bloodstream Neutrophils as a Treatment for Lung Infection and Inflammation

During lung infection, bloodstream neutrophils (PMNs) responding to infection travel to the airspace lumen. Although successful arrival of microbicidal PMNs to the airspace is essential for host defense against inhaled pathogens, excessive accumulation of PMNs in the lung contributes to the pathogenesis of several prevalent lung disorders, including acute lung injury, bronchiectasis, and COPD. Unfortunately, there is no treatment for controlling PMN accumulation in the lung.

Genetic Polymorphisms Of Interleukin-1 Alpha And Beta Associated With Early Onset Periodontitis

Periodontal disease occurs in 10-20% of adults, and constitutes a major cause of tooth loss. About 0.5% of U.S. adolescents between the ages of 14 to 17 years old (about 70,000) have localized early onset periodontitis and 0.1% (17,000) have the more destructive form known as generalized early onset periodontitis. Both types of early onset periodontitis often lead to tooth loss before the age of 20. Extrapolation of these figures up to age 35 leads to estimates of early onset periodontitis having a major impact on the dental health of 400,000 individuals in the U.S. population.

Novel Activators of Pyruvate Kinase for the Treatment of Hemolytic Anemias

This technology includes the development and use of small molecule activators of pyruvate kinase (PK) for the treatment of inherited nonspherocytic hemolytic anemia, including PK deficiency. PK deficiency is caused by an inherited deficiency in an enzyme that reduces the lifespan of red blood cells. More than 150 unique mutations have been identified in the PK gene that lead to decreased activity in this essential enzyme in the glycolytic pathway. The prematurely lysed red blood cells can lead to jaundice, splenomegaly, and a hemolytic anemia.

Combination Therapy of Human Recombinant N-acetylgalactosamine-6-sulfate sulfatase (hrGALNS) and Chaperones for the Treatment of Mucopolysaccharidosis Type IVA

This technology includes the identification and use of a combination therapy consisting of human recombinant N-acetylgalactosamine-6-sulfate sulfatase (hrGALNS) and the pharmacological chaperone compounds Ezetimibe and Pranlukast for the treatment of Mucopolysaccharidosis Type IVA (MPS IVA). MPS IVA is a rare disease caused by mutations in the gene encoding the lysosomal enzyme N-acetylgalactosamine-6-sulfate sulfatase (GALNS). Currently, hematopoietic stem cell transplantation (HSCT) and enzyme replacement therapy (ERT) are available for patients with MPS IVA.

Improved Cell Survival and Differentiation of Human Pluripotent Stem Cells by Combining Small Molecules Chroman-1 and Emricasan

This technology includes the use of the combination of the compounds Chroman-1 and Emricasan to achieve virtually 100% cell survival during human pluripotent stem cell passaging, cryopreservation/thawing, and differentiation in 2D and 3D cultures. Human pluripotent stem cells, including ESCs and iPSCs, are highly sensitive cells and undergo apoptosis during these routine procedures. A screening approach was used to identify the combination of the two compounds in this invention.

A Highly Efficient Differentiation Protocol for Placental Cells Derived from Human Pluripotent Stem Cells

This technology includes a robust and highly efficient protocol that differentiates human pluripotent stem cells (hPSCs) into the developmental precursor of placental cells, the trophectoderm (TE), under chemically defined conditions. The in vitro generation of TE cells holds great promise for modeling diseases of the placenta, drug screening, and cell-based therapies.

Small Molecule Inhibitors of the Ferroptosis Programmed Cell Death Pathway

This technology includes the identification and use of small molecules to rescue cells undergoing ferroptosis, a type of programmed cell death. These small molecules can be used as treatments in situations where epithelial cells are being damaged, including respiratory disorders, brain injury (including traumatic brain injury), renal injury, radiation-induced injury, and neurodegenerative disorders. Ferroptosis is a type of programmed cell death that is triggered by an increased presence of oxidants.

A Device to Measure Force Continuously During Handgrip Contraction and Relaxation for Myotonic Dystrophies

This invention relates to two devices that reliably, sensitively, and accurately measures force during handgrip contraction and subsequent relaxation. A delayed relaxation after a sustained and forceful handgrip is a cardinal symptom of myotonic dystrophies (DM). This delayed relaxation, handgrip myotonia, may be a therapeutic response biomarker in clinical trials.