High-Resolution and Artifact-Free Measurement and Visualization of Tissue Strain by Processing MRI Using a Deep Learning Approach

This technology includes a system for automatic artifact-free measurement and visualization of tissue strain by MRI at native resolution. The investigation of regional soft tissue mechanical strain can serve as a unique indicator for different related disorders. For example, measurement of myocardial tissue during contraction can help calculate, track, and assess cardiac stress. Currently, methods such as tagging MRI (tMRI) are used for imaging soft tissue deformation. Despite being well validated, methods such as tMRI suffer from low spatial and temporal resolution.

Multiplexing Homocysteine in Primary Newborn Screening Assays Using Maleimides as Select Derivatization Agents

Homocystinuria (HCU), a group of inherited disorders, causes symptoms ranging from failure to thrive and developmental delays in infants or young children to abnormal blood clots with onset in adults.1 Approximately 1 in 200,000 to 335,000 people have HCU globally.2

Minibody for Conditioning prior to Hematopoietic Stem Cell and Progenitor Cell Transplantation

Patient conditioning is a critical initial step in hematopoietic stem and progenitor cell (HSPC) transplantation procedures to enable marrow engraftment of infused cells. Conditioning regimens have traditionally been achieved by delivering cytotoxic doses of chemotherapeutic agents and radiation. However, these regimens are associated with significant morbidity and mortality, and cannot be used safely in elderly or subjects with comorbidities.

Compatible 3-D Intracardiac Echography Catheter and System for Interventional Cardiac Procedures

This technology includes a versatile intravascular 3D intracardiac echocardiography (ICE) catheter that can operate under conventional X-ray and MRI for use during interventional cardiac procedures. The 3D MRICE and custom, GPU-based, real-time imaging system are also included. Structural heart disease affects more than 2.9% of the US population, and common interventional procedures can be difficult because of limitations in catheter devices and inadequate image guidance.

Trans-auricular Left Atrial Appendage Ligation to Prevent Thrombosis

This technology includes an interventional device to occlude the left atrial appendage to prevent thrombus formation. Atrial fibrillation is the most common cardiac arrhythmia and is associated with formation of thrombus in the left atrial appendage. Standard preventative treatment involves anticoagulation, which is not tolerated by all patients. Existing devices necessitate improvement because they need trans-septal puncture and anticoagulation to prevent thrombus or are prone to life-threatening complications.

Single Scan Bright-blood and Dark-blood Phase Sensitive Inversion Recovery (PSIR) Late Gadolinium Enhancement (LGE) for Cardiovascular Magnetic Resonance (CMR) Imaging

This technology includes a technique to improves detection of myocardial scar compared with conventional bright-blood late gadolinium enhancement (LGE) techniques. Dark-blood late gadolinium enhancement (DB-LGE) improves tissue delineation with signal suppression of the blood pool based on T2-preparation pulse that is relatively independent from the blood flow velocities and improves scar detection in patients with known or suspected coronary artery disease.

Oral Treatment of Hemophilia

This invention portrays a simple method for treatment of antigen-deficiency diseases by orally administering to a subject a therapeutically effective amount of the deficient antigen, wherein the antigen is not present in a liposome. This method increases hemostasis in a subject having hemophilia A or B, by orally administering to the hemophiliac a therapeutically effective amount of the appropriate clotting factor, sufficient to induce oral tolerance and supply exogenous clotting factor to the subject.