Endo-cameral Closure Device for Structural Heart Defects and Blood Vessel Repair

This technology includes a device to close a hole in the wall of a large blood vessel or cardiac chamber from the inside out, delivered over a guidewire and through a catheter or sheath. First, the proximal portion deploys within the vessel or chamber and is advanced over a guidewire to oppose the wall and seal the hole. Second, the distal portion self-assembles outside the vessel or chamber upon withdrawal of the guidewire. Deployment of the distal portion anchors the device securely in place.

Rabbit Antisera to Various Matrix, Matricellular, and Other Secreted Proteins

The extracellular matrix (ECM) is composed of a group of proteins that regulate many cellular functions, such as cell shape, adhesion, migration, proliferation, and differentiation. Deregulation of ECM protein production or function contributes to many pathological conditions, including asthma, chronic obstructive pulmonary disease, arthrosclerosis, and cancer. Scientists at the NIH have developed antisera against various ECM components such as proteoglycan, sialoprotein, collagen, etc.. These antisera can be used as research tools to study the biology of extracellular matrix molecules.

In-vivo System to Interrogate the Functions of Mucous Membranes and Identify Mucin/Glycan Mimetics and JAK/STAT Inhibitors for the Treatment of Diseases of the Oral Cavity and Digestive Tract

This technology includes a Drosophila mutant strain that can be used as an in vivo model for diseases of the oral cavity and digestive tract (Sjogren's syndrome, colitis, colon cancer, inflammatory bowel disease), where the mucous membrane is disrupted or non-functional. This mutant lacks a mucous membrane and displays epithelial cell damage, uncontrolled cell proliferation and the up-regulation of conserved signaling pathways (JAK/STAT).

First in class Small Molecule Agonists of the mammalian Relaxin family receptor 1 (RXFP1) and use in treatment of cancer, fibrotic, and vascular disorders (HHS Ref No. E-145-2024-0-US-02)

It is well documented in literature that activation of RXFP1 by relaxin induces: 1) up-regulation of the endothelin system which leads to vasodilation; 2) extracellular matrix remodeling through regulation of collagen deposition, cell invasiveness, proliferation, and overall tissue homeostasis; 3) a moderation of inflammation by reducing levels of inflammatory cytokines, such as TNF-a and TGF-b; and 4) angiogenesis by activating transcription of VEGF.