Systems and Methods for Applying Pressure to the Heart for the Treatment of Tricuspid Valve Regurgitation

This technology includes structures and methods for cinching a band around the heart for treating conditions including tricuspid valve regurgitation (TR). When positioned appropriately along the atrioventricular groove, the band is tightened around the heart which narrows the tricuspid annulus and relieves TR.

Helical Guidewires and Related Systems for Transcatheter Heart Valve Procedures

This technology includes a guidewire purpose-built for delivery of bulky transcatheter heart valves (THV). Conventional THV guidewires are rigid and have a distal tip shaped like a pigtail to prevent apical ventricular perforation. This invention is a 3-dimensional helical or antihelical curve that can protect against apical perforation, possibly better, and that allows subtle 3-mensional deflection to aid the operator in achieving coaxiality or overcoming delivery obstacles such as calcific spicules.

Device for Closure of Transvascular or Transcameral Access Ports

This technology includes a novel method to access the arterial circulation to allow introduction of large devices, such as transcatheter aortic valve replacement, percutaneous left ventricular assist devices, and thoracic aortic endografts. It also can be used in most labeled and off-label applications of Amplatzer nitinol occluder devices to occlude intracardiac holes and to allow non-surgical direct access to the heart. This new disclosure adds additional design features that have been tested in vivo.

Anti-sense Therapy Against ApoC-III as a Treatment for High Cholesterol

This technology includes a new class of synthetic peptides that activate Lipoprotein Lipase (LPL), a key plasma enzyme that lowers triglycerides, by displacing apoC-111, a potent inhibitor of LPL. ApoC-11 is a known activator of LPL, whereas ApoC-111 inhibits LPL and raises triglycerides either directly by blocking lipolysis and or by preventing hepatic uptake of lipoproteins. Both apoC-II and apoC-III have to bind to the surface of a lipoprotein particle to mediate their effects.

Novel ApoC-11 Mimetic Peptides That Activate LPL for the Treatment of ApoC-11 Deficiency and Hypertriglyceridemia

This technology includes a new class of synthetic peptides that activate Lipoprotein Lipase (LPL), a key plasma enzyme that lowers triglycerides. Mutations in apoC-II is a genetic cause of severe hypertriglyceridemia, which can lead to cardiovascular disease and pancreatitis.

Phase Sensitive Motion Correction and T1 Mapping for Cardiovascular Magnetic Resonance Imaging

This technology includes a method of correcting the motion during T1 mapping using cardiovascular magnetic resonance imaging (MRI). Ischemic heart disease is the leading cause of death in the United States. The lack of blood supply among myocardial tissue, especially for scar regions, changes the T1 relaxation value of heart muscles. The non-invasive quantification of T1 value of myocardium (T1 mapping) is therefore of great importance for the diagnosis and treatment of cardiovascular disease.

3D Bioprinting of Cardiac Patch with Anisotropic and Perfusable Architecture for the Repair of Damaged Cardiac Muscle

This technology includes a novel cardiac patch which was 3D printed to repair damaged cardiac tissue. Based on biological and anatomical understanding of myocardial tissue, a novel 3D bioprinting technique was developed to directly fabricate the cellularized and vascularized cardiac patch with anisotropic fiber and perfusable vessel architecture. The design will integrate biomimetic aligned myocardial fibers and perfusable blood vessels to create a thick, functional cardiac patch, suitable for the human heart implantation.

Novel Bicuspid Transcatheter Heart Valve Frame and Leaflets for Mitro Valve Implantation

This technology includes a pair of subsystems for a novel transcatheter bicuspid valve (frame and leaflets) intended for implantation in the mitral position. It is simple, it overcomes key limitations to transcatheter bicuspid mitral valve implants, and it overcomes key limitations to transcatheter tricuspid mitral valve implants.