Broadly Protective Influenza Vaccine Comprising a Cocktail of Inactivated Avian Influenza Viruses

There is a great need for broadly protective, “universal” influenza virus vaccines given the antigenic drift and shift of influenza viruses and the variable protective efficacy of the current influenza vaccines. This technology relates to a broadly protective, “universal” influenza vaccine candidate composed of a cocktail of different low pathogenicity avian influenza virus subtypes inactivated by betapropiolactone (BPL).

A VSV-EBOV-Based Vaccine Against COVID-19

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the causative agent of for coronavirus disease 2019 (COVID-19). COVID-19 is characterized by fever, cough, difficulty breathing, loss of taste and smell, nausea, and sore throat. As of the fourth quarter 2020, COVID-19 is responsible for over 1.17 million deaths worldwide. As the pandemic continues to surge, the importance of a safe, affordable, and efficacious vaccine is of urgent importance.

Murine Monoclonal Antibodies Effective To Treat Respiratory Syncytial Virus

Available for licensing through a Biological Materials License Agreement are the murine MAbs described in Beeler et al, "Neutralization epitopes of the F glycoprotein of respiratory syncytial virus: effect of mutation upon fusion function," J Virol. 1989 Jul;63(7):2941-2950 (PubMed abs). The MAbs that are available for licensing are the following: 1129, 1153, 1142, 1200, 1214, 1237, 1112, 1269, and 1243. One of these MAbs, 1129, is the basis for a humanized murine MAb (see U.S.

Mouse Lacking the Chemokine Receptor CX3CR1

This mouse has been generated by targeted gene disruption. The mouse provides a model to investigate the function of the chemokine receptor CX3CR1, which is a proinflammatory receptor for the leukocyte chemoattractant CX3CL1 (aka fractalkine). As an example, the mouse is in use in the study of atherosclerosis. Further, the mouse may serve as a model study the role of the immune system during infection with pathogens as well as other immunologically mediated diseases and responses to tumors.

Enzymatically-Active RNA-Dependent RNA Polymerase From a Human Norovirus (Calicivirus)

The noroviruses (formerly known as “Norwalk-like viruses”) are associated with gastroenteritis outbreaks, affecting large numbers of individuals each year. Emerging data are supporting their increasing recognition as important agents of diarrhea-related morbidity and mortality. The frequency with which noroviruses are associated with gastroenteritis as “food and water-borne pathogens” has led to the inclusion of caliciviruses as Category B Bioterrorism Agents/Diseases.

Construction of Recombinant Baculoviruses Carrying the Gene Encoding the Major Capsid Protein, VP1, From Calicivirus Strains (Including Norovirus Strains Toronto, Hawaii, Desert Shield, Snow Mountain, and MD145-12)

The noroviruses (known as "Norwalk-like viruses") are associated with an estimated 23,000,000 cases of acute gastroenteritis in the United States each year. Norovirus illness often occurs in outbreaks, affecting large numbers of individuals, illustrated recently by well-publicized reports of gastroenteritis outbreaks on several recreational cruise ships and in settings such as hospitals and schools. Norovirus disease is clearly important in terms of medical costs and missed workdays, and accumulating data support its emerging recognition as important agents of diarrhea-related morbidity.