Mouse Model for Cerebral Cavernous Malformation, an Inherited Brain Disorder

Cerebral Cavernous Malformation (CCM) is a brain disease affecting up to 0.5% of the worldwide population. CCM is characterized by grossly dilated vessels prone to leaking and hemorrhage which result in severe headaches, seizures, and strokes. Inherited forms of the disease are due to mutations in one of three loci, CCM1, CCM2, and CCM3. Prior efforts to develop mice with targeted null mutations in Ccm1, Ccm2, or Ccm3 have been unsuccessful, as such mutations result in embryonic death.

Protein Nanoparticles for Antigen Display in Vaccines

The technology relates to a protein-based nanoparticle platform that allows presentation of immunogenic molecules such as influenza virus antigens. This protein platform is made up of hepatitis B capsid/core proteins. The core proteins contain immunogenic loop c/e1, where other antigens can be inserted and the chimeric protein retains the ability to form capsid-like particles. The technology describes the insertion of one or more copies of influenza epitopes derived from the globular head or the stem region of hemagglutinin protein into or around the c/e1 loop of the core protein.

Broadly Protective Influenza Vaccine Comprising a Cocktail of Inactivated Avian Influenza Viruses

There is a great need for broadly protective, “universal” influenza virus vaccines given the antigenic drift and shift of influenza viruses and the variable protective efficacy of the current influenza vaccines. This technology relates to a broadly protective, “universal” influenza vaccine candidate composed of a cocktail of different low pathogenicity avian influenza virus subtypes inactivated by betapropiolactone (BPL).

A VSV-EBOV-Based Vaccine Against COVID-19

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the causative agent of for coronavirus disease 2019 (COVID-19). COVID-19 is characterized by fever, cough, difficulty breathing, loss of taste and smell, nausea, and sore throat. As of the fourth quarter 2020, COVID-19 is responsible for over 1.17 million deaths worldwide. As the pandemic continues to surge, the importance of a safe, affordable, and efficacious vaccine is of urgent importance.

Murine Monoclonal Antibodies Effective To Treat Respiratory Syncytial Virus

Available for licensing through a Biological Materials License Agreement are the murine MAbs described in Beeler et al, "Neutralization epitopes of the F glycoprotein of respiratory syncytial virus: effect of mutation upon fusion function," J Virol. 1989 Jul;63(7):2941-2950 (PubMed abs). The MAbs that are available for licensing are the following: 1129, 1153, 1142, 1200, 1214, 1237, 1112, 1269, and 1243. One of these MAbs, 1129, is the basis for a humanized murine MAb (see U.S.