Advancing VZV Antibody Detection: A High-Throughput LIPS Assay for Varicella Vaccine Recipients

The technology described is a sophisticated and high-throughput luciferase immunoprecipitation system (LIPS) assay designed to detect antibodies specific to Varicella-zoster virus (VZV) glycoprotein E (gE). By transfecting cells with VZV protein-Renilla luciferase fusion protein constructs and subsequently performing immunoprecipitations with protein A/G beads, this innovative assay enables the quantitative measurement of VZV gE antibody levels in blood serum samples.

Application of AAV44.9 Vector in Gene Therapy for the Inner Ear

This technology includes a novel AAV isolate (AAV44.9) to be used as gene therapy for the inner ear for the treatment of deafness. The ability of AAV vectors to transduce dividing and non-dividing cells, establish long-term transgene expression, and the lack of pathogenicity has made them attractive for use in gene therapy applications. Vectors based on new AAV isolates may have different host range and different immunological properties, thus allowing for more efficient transduction in certain cell types.

Identification of EGFR as A Receptor for AAV6 Transduction

AAV vectors offer unique advantages in gene therapy applications. Studies have shown that these replication deficient parvovirus vectors can deliver DNA to specific tissues and confer long-term transgene expression in a variety of systems. Although many studies have looked at the tissue-specific expression elicited by each of the AAV serotypes, a true understanding of how AAV transduces these tissues is still unclear. Of the large AAV family, only a few receptors or co-receptors have been identified.

mTOR Inhibition for the Prevention of Epithelial Stem Cell Loss and Mucositis

The integrity of the epidermis and mucosal epithelia is highly dependent on self-renewing stem cells and, therefore, is vulnerable to physical and chemical damage from common cancer treatments, such as radiation or chemotherapy. Consequently, many cancer patients undergoing these treatments develop mucositis, a debilitating condition involving painful and deep mucosal ulcerations. Since current prevention and treatment options for mucositis are limited, providing only minor relief and no protection to stem cells, novel therapies are needed.

Modified AAV5 Vectors for Enhanced Transduction and Reduced Antibody Neutralization

Scientists at the NIH disclosed a mutated adeno-associated virus (AAV) serotype 5 by modifying sialic acid binding regions which mediate viral entry into host cells. Preliminary results from animal studies suggest that this modification can increase transduction by 3-4 folds in salivary glands and muscles, and can significantly decrease the potential of being neutralized by preexisting antibodies compared to the wild type AAV. Thus, the modified AAV5 vectors seem to be optimal for gene therapy.

A Novel Adeno-Associated Virus for Gene Therapy

Scientists at the NIH disclosed a novel adeno-associated virus (AAV) termed "44-9." AAV44-9 based vectors have high gene transfer activity in a number of cell types, including salivary gland cells, liver cells, and different types of neurons (e.g., cells of the cortex, olfactory bulb, and brain stem, and Purkinje cells of the cerebellum). These vectors can increase the transduction efficiency and decrease the potential of being neutralized by preexisting antibodies compared to the wild type AAV.

Monoclonal Antibody Against Human Alpha-5 Integrin that Does Not Disrupt Adhesive Function

This technology includes a rat monoclonal antibody termed mAb11 was generated against the human alpha-5 integrin subunit and can provide immunological characterizations without disrupting integrin adhesive function. It permits characterization of its localization even if the receptor is bound to its fibronectin ligand. The antibody is commercially available from Millipore Sigma.

In-vivo System to Interrogate the Functions of Mucous Membranes and Identify Mucin/Glycan Mimetics and JAK/STAT Inhibitors for the Treatment of Diseases of the Oral Cavity and Digestive Tract

This technology includes a Drosophila mutant strain that can be used as an in vivo model for diseases of the oral cavity and digestive tract (Sjogren's syndrome, colitis, colon cancer, inflammatory bowel disease), where the mucous membrane is disrupted or non-functional. This mutant lacks a mucous membrane and displays epithelial cell damage, uncontrolled cell proliferation and the up-regulation of conserved signaling pathways (JAK/STAT).

Adeno-Associated Virus Gene Therapy for Diabetes and Obesity

This invention is directed to adeno-associated virus (AAV) vector delivery of exendin-4 (Ex-4) to salivary glands as treatment for diabetes and obesity. Ex-4 is a potent and long-acting agonist of the receptor for glucagon-like peptide 1 (GLP-1). Scientists at NIDCR have shown that AAV-mediated delivery of Ex-4 resulted in improved glucose homeostasis and weight profile in two rat models of obesity and type 2 diabetes. Further, AAV-mediated delivery of Ex-4 to rat salivary glands resulted in localized and sustained expression of Ex-4 that was biologically active and well tolerated.