Encapsulation of Fluorescent Nanodiamonds into Poly-dopamine (PDA) Shell and Further Covalent Functionalization of the PDA Shell for Diagnostic Imaging Applications

This technology includes a new class of nanoparticles in the carbon family, fluorescent nanodiamonds (FNDs), exhibiting superb physical and chemical properties for diagnostic imaging applications. We have developed a simple, fast, and robust method to encapsulate FNDs in polydopamine that can be further functionalized. By integrating anatomical and molecular based imaging capabilities, multimodal nanoparticle probes are becoming important in the paradigm shift from conventional to future imaging technologies.

Device and Method for Protecting Against Coronary Artery Compression During Transcatheter Mitral Valve Annuloplasty

Catheter-based mitral valve regurgitation treatments that use a coronary sinus trajectory or coronary sinus implant can have unwanted effects because the coronary sinus and its branches have been found to cross the outer diameter of major coronary arteries in a majority of humans. As a result, pressure applied by any prosthetic device in the coronary sinus (such as tension on the annuloplasty device) can compress the underlying coronary artery and induce myocardial ischemia or infarction.

Inhibition of T Cell Lactate Dehydrogenase (LDH) ex vivo Enhances the Anti-tumor Efficacy of Adoptive T Cell Therapy

Adoptive T cell therapy (ACT) with tumor infiltrating lymphocytes (TIL), T cell receptor (TCR) and Chimeric Antigen Receptor (CAR) engineered T cells, or hematopoietic stem cell transplantation, is a promising new approach to cancer treatment. ACT harnesses an individual's adaptive immune system to fight against cancer, with fewer side-effects and more specific anti-tumor activity. Despite their promise of ACT as curative, these therapies are often limited by the persistence and robustness of the responses of the T cells to the cancer cells.