Non-invasive Pan-Cancer Detection Method

One of four deaths in the United States is due to cancer despite an emphasis on prevention, early detection, and treatment that has lowered cancer death rates by 20% in the past two decades. Further improvements in survival rates are likely to come from improving the limits of detection sensitivity at earlier stages of cancer. New approaches that rely heavily on genomic information, however, may change future testing strategies.

Assay for Predicting the Time of Onset of Niemann-Pick Disease Type C (NPC)

Niemann-Pick Disease, type C (NPC) is a rare, autosomal recessive, neurodegenerative disease. Approximately 95% of patients with NPC have mutations in NPC1, a gene implicated in intracellular cholesterol trafficking. Mutation of NPC1 causes intracellular accumulation of unesterified cholesterol in late endosomal/lysosomal structures and marked accumulation of glycosphingolipids, especially in neuronal tissue. Thus, NPC patients generally present with hepatosplenomegaly (enlargement of liver and spleen) and neurological degeneration.

Codon-Optimized Gene Therapy for Niemann-Pick Disease Type C

Niemann Pick Disease Type C (NPC) is a rare and fatal, autosomal recessive, neurodegenerative disease that can present in infants, children, or adults. Most patients with NPC have mutations in NPC1, a gene implicated in intracellular cholesterol trafficking, which results in intracellular accumulation of unesterified cholesterol in late edosomal/lysosomal structures and of glycosphingolipids, especially in neuronal tissue. No curative therapy exists at present.

Novel Activators of Pyruvate Kinase for the Treatment of Hemolytic Anemias

This technology includes the development and use of small molecule activators of pyruvate kinase (PK) for the treatment of inherited nonspherocytic hemolytic anemia, including PK deficiency. PK deficiency is caused by an inherited deficiency in an enzyme that reduces the lifespan of red blood cells. More than 150 unique mutations have been identified in the PK gene that lead to decreased activity in this essential enzyme in the glycolytic pathway. The prematurely lysed red blood cells can lead to jaundice, splenomegaly, and a hemolytic anemia.

Small Molecule Inhibitors of Alpha IIb Beta 3 Receptor for Potential Therapeutic Intervention within Myocardial Infarction and Stroke

This technology includes methods for screening compounds and compositions useful for inhibiting or reducing platelet deposition, adhesion, and/or aggregation. The present invention further relates to methods of treatment or prophylaxis of thrombotic disorders, including stroke, myocardial infarction, unstable angina, abrupt closure following angioplasty or stent placement, thrombosis induced by peripheral vascular surgery, peripheral vascular disease or thrombotic disorders resulting from atrial fibrillation or inflammation.

Amido compounds as RORgt Modulators for the Treatment of Th17-related Autoimmune Diseases

This technology includes a series of diphenylpropanamides as potent and selective RORgt inhibitors for the treatment of Th17-related autoimmune diseases. The retinoic acid-related orphan receptor RORgt plays an important role in the differentiation of thymocytes, lymphoid tissue inducer cells, and inflammatory T helper-expressing interleukin 17a (Th17) cells. Small molecule RORgt inhibitors may provide means to regulate Th17 mediated immune response.

Small Molecule Inhibitors Against Human apurinic/apyrimidinic endonuclease 1 (APEl) for the Treatment of Cancer

This technology includes a novel APEl small molecule inhibitor, which exhibits potent in vitro activity and potentiates the cytotoxicity of DNA damaging agents. APEl is the primary mammalian enzyme responsible for the removal of abasic (AP sites) in DNA and functions as part of the base excision DNA repair pathway (BER). BER is instrumental in the repair of DNA damage caused by DNA alkylating agents (e.g., many cancer chemotherapeutics). Thus, inhibition of this pathway should potentiate the cytotoxicity of such compounds.

Use of Auranofin for the Treatment of Chronic Lymphocytic Leukemia (CLL)

This technology includes the use of auranofin for the treatment of Chronic Lymphocytic Leukemia (CLL). Auranofin is currently approved for the treatment of rheumatoid arthritis and has been shown to display anti-cancer activity. CLL is a blood and bone marrow disease that usually progresses over a lengthy period of time and normally occurs in middle-age adults. The current therapeutic options for CLL patients are limited, and there are few therapies under development.

New Antimalarial Chemotypes Discovered Through Chemical Methodology and Library Development

This technology includes three new compound classes displaying either differential or comprehensive antimalarial activity across geographically diverse lines. These compounds were identified from a quantitative high throughput screen of a novel chemical library with unique chemical complexity and are potential candidates for treating malaria.

Inhibitors of Eya2 Phosphatase as an Anticancer Therapy

This technology includes inhibitors of the Eya phosphatase which can be utilized as anticancer therapy. The Eya proteins are essential co-activators of the Six1 transcription factor, a gene that is abnormally re-expressed in a large percentage of breast cancers. This over-expression plays a causal role in the initiation and metastatic development of breast cancers. The Eya family of proteins was also found to contain a unique haloacid dehalogenase phosphatase domain with protein Tyr phosphatase activity which can potentially play a role in Six1- mediated breast tumorigenesis.