Treatment of Oculocutaneous/Ocular Albinism and for Increasing Pigmentation

Albinism (also called achromia, achromasia, or achromatosis) is a congenital disorder characterized by the complete or partial absence of pigment in the skin, hair and eyes due to absence or defect in any one of a number of proteins involved in the production of melanin.  Certain forms of albinism are known to be due to mutations in tyrosine metabolism.  In oculocutaneous albinism (OCA), pigment is lacking in the eyes, skin and hair.  In ocular albinism, only the eyes lack pigment.  Patients with albinism experience varying degrees of vision loss associated with foveal h

Viral Entry or Replication Inhibitors

The Tec family of tyrosine kinases, consisting of five family members Tec, Btk, Itk, Rlk, and BMX, are key regulators of signaling pathways of T lymphocytes. Many existing antiviral therapies rely on inhibition of viral replication, which leads to emergence or selection of resistant viruses. The current technology provides an alternative method for prevention or treatment of viral infection through administration of a Tec tyrosine kinase inhibitor. Such inhibitors can be siRNA, small chemical compounds, antisense or antibody.

Genes For Niemann-Pick Type C Disease

Niemann-Pick disease is a class of inherited lipid storage diseases. Niemann-Pick Type C disease is an autosomal recessive neurovisceral lipid storage disorder which leads to systemic and neurological abnormalities including ataxia, seizures, and loss of speech. Patients with the disease typically die as children. The biochemical hallmark of Niemann-Pick Type C cells is the abnormal accumulation of unesterified cholesterol in lysosomes, which results in the delayed homeostatic regulation of both uptake and esterification of low density lipoprotein (LDL) cholesterol.

Specific Inhibition of Gene Expression by Small Double Stranded RNAs

Double-stranded RNA (dsRNA) has been shown to trigger sequence-specific gene silencing in a wide variety of organisms, including plant, nematode and invertebrate species. Recent intense work in the field has shown that small dsRNAs mediate sequence specific RNA degradation in the process known as RNA interference (RNAi).

This invention provides for synthetic dsRNAs (20-25 nucleotides in length) and methods that can inhibit gene-specific expression in mammalian cells.

Treating Kidney Disorders and Diabetic Nephropathy with N-acetyl mannosamine (ManNAc)

N-acetylmannosamine (ManNAc) is a small uncharged physiological molecule that crosses membranes readily and is the natural precursor of intracellular sialic acid synthesis. NHGRI investigators discovered that ManNAc can be used for therapeutic purposes, including treating certain kidney diseases (e.g., those involving proteinuria and hematuria), resulting primarily or secondarily from hyposialylation (lack of sialic acid). Notably, ManNAc can also be used to treat diabetic nephropathy or diabetes.

A Mouse Model of Multiple Endocrine Neoplasia, Type I

The current invention embodies a mouse model which is heterozygous for a null allele at the Men1 locus of murine chromosome 19. Men1 has similar exon-intron organization and amino acid identity compared with its human analog MEN1, which has been implicated in the pathogenesis of multiple endocrine neoplasia, type I (MENI). This mouse model has been shown to develop features remarkably similar to those of MEN1, which include tumors of the endocrine pancreas, pituitary, and parathyroids.

Selections of Genes

The invention provides selections of genes expressed in a cancer cell that function to characterize such cancer, and methods of using the same for diagnosis and for targeting the therapy of selected cancers. In particular, methods are provided to classify cancers belonging to distinct diagnostic categories, which often present diagnostic dilemmas in clinical practice, such as the small round blue cell tumors (SRBCTs) of childhood, including neuroblastoma (NB), rhabdomyosarcoma RMS), Burkitt’s lymphoma (BL), and the Ewing family of tumors (EWS).

Farnesyltransferase Inhibitors for Treatment of Laminopathies, Cellular Aging and Atherosclerosis

Hutchinson-Gilford Progeria Syndrome (HGPS) is a very rare progressive childhood disorder characterized by premature aging (progeria). Recently, the gene responsible for HGPS was identified (Eriksson M, et al. Nature 2003), and HGPS joined a group of syndromes — the laminopathies — all of which are caused by various mutations in the lamin A/C gene (LMNA). Lamin A is one of the family of proteins that is modified post-translationally by the addition of a farnesyl group.

Monoclonal Antibody to the Protein NCOA6 (also called ASC-2, AIB-3)

The invention relates to monoclonal antibodies that bind to the transcription factor NCOA6 (ASC-2, AIB-3, TRB, TRAP250, NRC). The antibodies have proven successful reagents for Western blotting and for purifying complexes containing NCOA6. The Western blot experiments revealed that NCOA6 is over-expressed in several breast cancer cell lines, and the purification experiments identified a protein complex containing NCOA6 (the ASCOM complex). The monoclonal antibodies may be useful reagents for studying the role of NCOA6 in transcription and for studying the ASCOM complex.