Methods and Materials for Identifying Polymorphic Variants, Diagnosing Susceptibilities, and Treating Disease

This invention relates to materials and methods associated with polymorphic variants in two enzymes involved in folate-dependent and one-carbon metabolic pathways important in pregnancy-related complications and neural tube birth defects: MTHFD1 (5,10-methylenetrahydrofolate dehydrogenase, 5,10-methenyltetrahydrofolate cyclohydrolase, 10-formyltetrahydrofolate synthase) and methylenetetrahydrofolate dehydrogenase (NADP+ dependent) 1-like (MTHFD1L). These enzymes are extremely important in the promotion of DNA synthesis, a process that is critical for normal placental and fetal development.

Small Molecule Activators of Human Pyruvate Kinase for Treatment of Cancer and Enzyme-Deficient Hemolytic Anemia

NIH investigators have discovered a series of small compounds with the potential to treat a variety of cancers as well as hemolytic anemia. Contrary to most cancer medications, these molecules can be non-toxic to normal cells because they target a protein specific to the metabolic pathways in tumors, thus representing a significant clinical advantage over less-specific chemotherapeutics.

Device and Method for Direct Measurement of Isotopes of Expired Gases: Application in Research of Metabolism and Metabolic Disorders, and in Medical Screening and Diagnostics

The technology offered for licensing and for further development concerns a novel device for intervallic collection of expired gas from subjects and subsequent measurement of the isotopic content of such expired gases. The device is specifically designed for medical research and clinical applications, and in particular in the area of metabolic disorders. The device may facilitate the development and testing of new therapies for such disorders and may be used for medical screening and diagnostics of metabolic diseases.

Caspase Inhibitors Useful for the Study of Autoimmune or Inflammatory Diseases

Novel and potent caspase 1 inhibitors are available for licensing. In particular, this technology discloses potent and selective caspase 1 inhibitors that target the active site of the enzyme. Caspase 1 is known to play a pro-inflammatory role in numerous autoimmune and inflammatory diseases and therefore represents an excellent target for treatment of a broad range of diseases, including but not limited to Huntington's, amyotrophic lateral sclerosis, ischemia, rheumatoid arthritis, osteoarthritis, inflammatory bowel disease, and sepsis.

Pyruvate Kinase M2 Activators for the Treatment of Cancer

NIH investigators have discovered a series of small compounds with the potential to treat a variety of cancers as well as hemolytic anemia. Contrary to most cancer medications, these molecules can be non-toxic to normal cells because they target a protein specific to the metabolic pathways in tumors, thus representing a significant clinical advantage over less-specific chemotherapeutics.

Selective 12-Human Lipoxygenase Inhibitors for the Treatment of Diabetes and Clotting

This invention discloses small molecule inhibitors of human 12-lipoxygenase (12-hLO). 12-lipoxygenase expression, activation, and lipid metabolites have been implicated in type 1 and type 2 diabetes, cardiovascular disease, hypertension, Alzheimer’s, and Parkinson’s disease. The development of 12-hLO inhibitors may be a potent intracellular approach to decreasing the ability of platelets to form large clots in response to vessel injury or activation of the coagulation pathway.

Glucocerebrosidase Activators as a Treatment for Gaucher Disease

This technology is a collection of small molecule activators of a genetically defective version of the enzyme called glucocerebrosidase (GCase), which causes Gaucher disease. Gaucher disease is a rare disease affecting 1 in 40,000 babies born. Ashkenazi Jews of eastern European descent (about 1 in 800 live births) are at particular risk of carrying this genetic defect. It is caused by inherited genetic mutations in the gene that encodes GCase, which result in reduced activity of the enzyme.

Novel Small Molecule Inhibitors for the Treatment of Huntington’s Disease

This technology is a collection of small molecules screened for their ability to prevent or reduce the cytotoxic effects of the protein, Huntingtin. Huntington's disease is a neurodegenerative disorder due to a dominantly acting expansion of a CAG trinucleotide repeat in exon 1 of the Huntington (HTT) gene resulting in production of the altered (mutant) protein Huntingtin, which has a long chain of polyglutamine (poly Q) attached to the exon 1 encoded protein sequence.

Methods of Treating Giardiasis Using FDA-Approved Compounds

This technology includes a group of at least twenty-nine, diverse, commercially available compounds that are newly identified for activity against Giardia lamblia parasites. At least six of the candidate compounds, Bortezomib, Decitabine, Hydroxocobalamin, Amlexanox, Idarubicin, and Auranofin have preexisting FDA approval for human use for other (non-Giardia) conditions. Another three compounds, Fumagillin, Nitarsone and Carbadox have preexisting approval for veterinary use for non-Giardia conditions.

Model Cell Lines With and Without AKT1 Mutations Derived from Proteus Syndrome Patients

The Proteus syndrome is a congenital disorder characterized by patchy overgrowth and hyperplasia (cell proliferation) of multiple tissues and organs, along with susceptibility to developing tumors. It is a rare disorder, with incidence of less than one case per million, caused by a somatic mutation. It is also a mosaic disorder, that is one in which cells of the same person have different genetic content from one another.