Glucocerebrosidase Non-inhibitory Chaperones for the Treatment of Gaucher Disease, Parkinson's Disease, and Other Proteinopathies

Gaucher disease is a rare lysosomal storage disease that is characterized by a loss of function of the glucocerebrosidase (GCase) enzyme, which results in a decreased ability to degrade its lipid substrate, glucocerebroside. The intracellular build up of this lipid causes a broad range of clinical manifestations, ranging from enlarged spleen/liver and anemia to neurodegeneration. In Gaucher disease, the loss of GCase function has been attributed to low levels of the protein in the lysosomal compartment, resulting from improper GCase folding and transport.

Mouse Model for Methylmalonic Acidemia, an Inherited Metabolic Disorder

Methylmalonic Acidemia (MMA) is a metabolic disorder affecting 1 in 25,000 to 48,000 individuals globally. MMA is characterized by increased acidity in the blood and tissues due to toxic accumulation of protein and fat by-products resulting in seizures, strokes, and chronic kidney failure. About 60% of MMA cases stem from mutations in the methylmalonyl CoA mutase (MUT) gene encoding a key enzyme required to break down amino acids and lipids. Previous efforts to develop mice with null mutations in MUT have been unsuccessful, as such mutations result in neonatal death.

Novel Codon-Optimized Gene Therapeutic for Methylmalonic Acidemia

Methylmalonic Acidemia (MMA) is a metabolic disorder characterized by increased acidity in the blood and tissues due to toxic accumulation of protein and fat by-products resulting in seizures, strokes, and chronic kidney failure. A significant portion of MMA cases stem from a deficiency in a key mitochondrial enzyme, methylmalonyl-CoA mutase (MUT), required to break down amino acids and lipids. Currently, there are no treatments for MMA and the disease is managed primarily with dietary restriction of amino acid precursors and liver-kidney transplantation in severe cases.

Gene Therapy for Niemann-Pick Disease Type C

Investigators at the National Human Genome Research Institute (NHGRI) of the National Institutes of Health (NIH) are seeking collaborators to further develop gene therapy to treat Niemann-Pick Disease Type C (NPC). NPC is a rare, autosomal recessive, neurodegenerative disease. Approximately 95% of patients with NPC have mutations in NPC1, a gene implicated in intracellular cholesterol trafficking. Mutations of NPC1 cause intracellular accumulation of unesterified cholesterol in late endosomal/lysosomal structures and marked accumulation of glycosphingolipids, especially in neuronal tissue.

Capsid-Free AAV Vectors for Gene Delivery and Their Use for Gene Therapy

The invention concerns novel capsid-free AAV vectors that can be used for gene delivery and gene therapy applications. The invention provides for a linear nucleic acid molecule comprising in this order: a first adeno-associated virus (AAV) inverted terminal repeat (ITR), a nucleotide sequence of interest, and a second AAV ITR, wherein said nucleic acid molecule is devoid of AAV capsid protein coding sequences. The said nucleic acid molecule can be applied to a host at repetition without eliciting an immune response.

Non-invasive Pan-Cancer Detection Method

One of four deaths in the United States is due to cancer despite an emphasis on prevention, early detection, and treatment that has lowered cancer death rates by 20% in the past two decades. Further improvements in survival rates are likely to come from improving the limits of detection sensitivity at earlier stages of cancer. New approaches that rely heavily on genomic information, however, may change future testing strategies.

Assay for Predicting the Time of Onset of Niemann-Pick Disease Type C (NPC)

Niemann-Pick Disease, type C (NPC) is a rare, autosomal recessive, neurodegenerative disease. Approximately 95% of patients with NPC have mutations in NPC1, a gene implicated in intracellular cholesterol trafficking. Mutation of NPC1 causes intracellular accumulation of unesterified cholesterol in late endosomal/lysosomal structures and marked accumulation of glycosphingolipids, especially in neuronal tissue. Thus, NPC patients generally present with hepatosplenomegaly (enlargement of liver and spleen) and neurological degeneration.

Codon-Optimized Gene Therapy for Niemann-Pick Disease Type C

Niemann Pick Disease Type C (NPC) is a rare and fatal, autosomal recessive, neurodegenerative disease that can present in infants, children, or adults. Most patients with NPC have mutations in NPC1, a gene implicated in intracellular cholesterol trafficking, which results in intracellular accumulation of unesterified cholesterol in late edosomal/lysosomal structures and of glycosphingolipids, especially in neuronal tissue. No curative therapy exists at present.

Improved Cell Survival and Differentiation of Human Pluripotent Stem Cells by Combining Small Molecules Chroman-1 and Emricasan

This technology includes the use of the combination of the compounds Chroman-1 and Emricasan to achieve virtually 100% cell survival during human pluripotent stem cell passaging, cryopreservation/thawing, and differentiation in 2D and 3D cultures. Human pluripotent stem cells, including ESCs and iPSCs, are highly sensitive cells and undergo apoptosis during these routine procedures. A screening approach was used to identify the combination of the two compounds in this invention.