Novel Antiviral—Griffithsin Derived from Algae—for Prophylaxis or Treatment of Rabies Infection

Rabies virus (RABV) infection leads to fatal encephalitis—inflammation of the brain—if left untreated. Millions of people survive RABV infection each year due to timely administration of post-exposure treatment, however, nearly 60,000 people die from rabies each year according to the World Health Organization. Obstacles to timely treatment for RABV infection include the high cost and burdensome storage requirements (i.e., refrigeration) of current post-exposure treatments (i.e., rabies immunoglobulin (RIG)).

Identification and Use of Niclosamide Analogs as Inhibitors of SARS-CoV-2 Infection

This technology includes the identification and use of niclosamide analogs and prodrugs for the treatment of SARS-CoV-2 infection. In-vitro studies have found niclosamide, an old anthelminthic drug, to be potent and effective against Covid-19. But the broad antiviral effect of niclosamide is offset by the low solubility of the drug, leading to poor oral absorption. The niclosamide analogs and prodrugs included in this technology have better in vitro physicochemical properties. Also, these analogs were comparable to niclosamide in the in-vitro 3D models of SARS-CoV-2 infection.

Cloned Genomes Of Infectious Hepatitis C Virus And Uses Thereof

The current invention provides nucleic acid sequences comprising the genomes of infectious hepatitis C viruses (HCV) of genotype 1a and 1b. It covers the use of these sequences, and polypeptides encoded by all or part of the sequences, in the development of vaccines and diagnostic assays for HCV and the development of screening assays for the identification of antiviral agents for HCV.

Methods and Systems for Evaporation of Solvents and Solid Phase Extraction

There is an acute deficit in chemical synthesis with respect to benchtop tools that are specifically designed to address the capability and efficiency of certain key aspects of chemical synthesis, namely reaction preparation, product isolation, and solvent removal. Chemical research currently relies upon a variety of devices that function in a manner that is disconnected, as well as difficult to integrate and automate; collectively, these device challenges hinder the efficient isolation and purification of desired chemical synthesis products.

A Device to Measure Force Continuously During Handgrip Contraction and Relaxation for Myotonic Dystrophies

This invention relates to two devices that reliably, sensitively, and accurately measures force during handgrip contraction and subsequent relaxation. A delayed relaxation after a sustained and forceful handgrip is a cardinal symptom of myotonic dystrophies (DM). This delayed relaxation, handgrip myotonia, may be a therapeutic response biomarker in clinical trials.

OASIS: Automated brain lesion detection using cross-sectional multimodal magnetic resonance imaging

This invention is a novel statistical method for automatically detecting lesions in cross-sectional brain magnetic resonance imaging (MRI) studies. OASIS uses multimodal MRI from one image acquisition session and produces voxel-level probability maps of the brain that quantifies the likelihood that each voxel is part of a lesion. Binary lesion segmentations are created from these probability maps using a validated population-level threshold. In this application, fluid attenuated inversion recovery (FLAIR), proton density (PD), T2-weighted, and Tl-weighted volumes were used.

A Scalable Synthesis of Dual-Target Inhibitor of Cannabinoid-1 Receptor and Inducible Nitric Oxide Synthase

The present invention is directed to a synthesis of a dual-target inhibitor of cannabinoid-1 (CB1R) receptor and inducible nitric oxide synthase, and more specifically, to an improved process for synthesis of (S,1E,NE)-N-(1-aminoethylidene)-3-(4-chlorophenyl)-4-phenyl-N'-((4-(trifluoromethyl)phenyl)sulfonyl)-4,5-dihydro-1H-pyrazole-1-carboximidamide.

Potentiating Antibody Therapy by Targeting Complement Deposited on Cancer Cells

Monoclonal antibodies (mAbs) have become a mainstay of therapy for many cancers. However, antibody therapy is not completely effective in some applications due to loss of the target surface antigen on cancer cells. Such mAb-induced “escape variants” are no longer sensitive to the therapeutic mAb therapy. It was observed that the escape variants carried covalently bound complement activation fragments, especially C3d. NIH inventors have generated several C3d-specific mouse and rabbit monoclonal antibodies to re-target cells that have escaped from mAb therapy.

CRISPR-Mediated Gene Inhibition and Neuronal Differentiation in Human Induced Pluripotent Stem Cell (iPSC) Lines

This invention includes human induced pluripotent stem cell (iPSC) lines that harbor a single copy dCas9-BFP-KRAB at the CLYBL safe harbor locus (mediating CRISPR inhibition of human gene expression) and/or a single copy of dox-inducible NGN2 at the AAVS1 locus (enabling the differentiation of the iPSCs into neurons). The CRISPR-mediated inhibition of human gene expression is maintained into the differentiated neurons, permitting functional studies of targeted genes in neurons.

Rapid and Robust Differentiation of Human iPSCs into Motor Neurons

This technology includes a system that allows for robust differentiation of human-induced pluripotent stem cells (iPSC) into motor neurons within a time frame of 7 to 10 days. To differentiate the iPSC, a stable transgene is inserted into the CLYBL safe harbor locus in the human genome using TALENs. The transgene allows for doxycycline-inducible expression of the transcription factors (NGN2, ISL1, and LHX3) that are needed for the cells to differentiate to motor neurons. The technology is described in detail in the protocol paper published by Fernandopulle et al, cited below.