Novel Method and Kit Using Monoclonal Antibodies for More Sensitive Detection of Dengue Virus

Following primary dengue virus (DENV) infection, non-structural protein 1 (NS1), a dengue-specific glycoprotein, is present in blood and is easily detected by various assays. However, for any infection thereafter (secondary infection), bioavailability of the glycoprotein greatly reduces sensitivity of DENV detection. Since secondary DENV infection is a risk factor for developing hemorrhagic fever, there is increasing need for more sensitive detection at this stage.

Polypeptides and Methods for Enhancing and Balancing Monovalent or Multivalent Flavivirus Vaccines

CDC researchers have developed a potent immunogenic enhancer polypeptide useful for improving flavivirus vaccines. Flaviviruses such as dengue virus (1, 2, 3 and 4), Japanese encephalitis virus, Murray Valley encephalitis virus, St. Louis encephalitis virus, yellow fever virus and tick-borne encephalitis virus are a great burden on public health. This technology describes an identified CD4+ T cell epitope occurring within the E-glycoprotein of West Nile virus and methods of using this polypeptide to increase vaccine immunogenicity in monovalent vaccines.

Compositions and Methods for Improved Lyme Disease Diagnosis

This CDC-developed technology entails novel compositions and methods related to the diagnosis of Lyme disease. Lyme disease, caused by the Borrelia burgdorferi bacterium, is the most common tick-borne infectious disease in the US and Europe. Diagnosis of Lyme disease is particularly challenging as symptoms often appear long after exposure. At present, the only FDA-approved diagnostic for Lyme disease involves patient blood tests for particular antibodies; these include an ELISA to measure patient antibody levels and a Western blot assay to detect antibodies specific to B.

Dengue Vaccines: Tools for Redirecting the Immune Response for Safe, Efficacious Dengue Vaccination

This CDC-developed invention relates to dengue vaccines that have been specifically developed for improved efficacy and directed immune response to avoid antibody-dependent enhancement (ADE) safety issues that, theoretically, may be associated with dengue vaccines and vaccinations. Dengue viral infection typically causes a debilitating but non-lethal illness in hosts.

Methods of Retaining Methylation Pattern Information in Globally Amplified DNA

CDC researchers have developed a novel method that generates globally amplified DNA copies retaining parental methylation information; making accurate DNA-archiving for methylation studies much more feasible and cost-effective than undertaking such an endeavor with alternate technologies. This unique approach eliminates a significant bottleneck in the collection of methylation information in the genome(s) of an individual organism, hosts and pathogens.

Virus Replicon Particles as Rift Valley Fever Vaccines

Rift Valley fever (RVF) virus primarily infects animals but also has the capacity to infect humans. The disease causes abortion and death among RVF-infected livestock, resulting in substantial economic loss to people living in many parts of Africa and Arabian Peninsula. Currently, there is no commercial vaccine for RVF. CDC scientists have developed a RVF virus replicon particle (VRP) vaccine candidate.

Recombinant Nucleic-Acid Based Flavivirus Nucleic Acids for Development of Vaccines and/or Sero-diagnostics

CDC scientists have developed recombinant flavivirus nucleic acids for the generation of broad protective immunity against flaviviruses, as well as the development of sensitive serologic diagnostic tools. Mosquito borne viral encephalitis is often caused by a flavivirus, such as Japanese encephalitis virus, dengue virus or West Nile virus. Infection by these pathogens is often lethal to both humans and animals.

A Bias-free Sampling and Collection Trap for Resting Mosquitoes

This CDC developed collection device is a small (approximately 1 cubic foot) open-sided container that attracts mosquitoes seeking a daytime resting location. The container is dark-colored and constructed of molded wood-fiber or recycled, high-density plastic. Mosquitoes that enter the dark space of the container are aspirated through a battery-powered fan into a collection receptacle. The receptacle is especially attractive to Culex and Anopheles mosquitos' vectors of West Nile Virus and malaria parasites, respectively.