Methods To Regulate Metabolism For Treatment Of Neural Injuries and Neurodegeneration

Axonal injury and subsequent neuronal death underpin the pathology of many neurological disorders from acute neural injuries (motor vehicle crashes, combat related injuries, traumatic brain injuries) to neurological diseases (multiple sclerosis, glaucoma). In the central nervous system (CNS), microglia help respond to CNS injuries by mediating the immune response and increasing inflammation at the site of injury. 

Gene Therapy for Treatment of CRX-Autosomal Dominant Retinopathies

Mutations in the cone rod homeobox (CRX) transcription factor lead to distinct retinopathy phenotypes, including early-onset vision impairment in dominant Leber congenital amaurosis (LCA). Adeno-Associated virus (AAV) vector-mediated delivery of a CRX cDNA under the control of a CRX promoter region partially restored photoreceptor phenotype and expression of phototransduction genes in an in vitro model of CRX-LCA.

Using Artificial Intelligence To Diagnose Uveitis

Summary: 
The National Eye Institute seeks research co-development partners and/or licensees for a deep learning algorithm that can identify retinal vasculitis using color fundus images.

Description of Technology: 
Uveitis is caused by inflammation in the eye that can cause pain and reduce vision. The rate of uveitis in the United States is 1 in every 200 people with eye-related irritation. Permanent symptoms such as vision loss can occur if untreated. Therefore, early detection is crucial. 

Establishment of Induced Pluripotent Stem Cells (iPSC) from the Thirteen-lined Ground Squirrel

The limited choice in cell types available for in vitro studies has become an obstacle in hibernation research. 

Researchers at the National Eye Institute for the first time have successfully established iPSC line(s) from a mammalian hibernator, which can be potentially used to generate various cell types and tissue models for in-depth mechanistic studies of hibernation and coldness tolerance in vitro. 

Methods and Compositions for Treating Genetically Linked Diseases of the Eye

X-linked retinoschisis (XLRS) is an inherited, monogenetic ocular disease caused by mutations in the retinoschisin (RS1) gene, resulting in the development of cystic cavities throughout the retina and leading to juvenile macular degeneration. Approximately 1:15,000 males in the US are affected, classifying the condition as an orphan indication. 

Strategies to Protect Mammalian Neural Tissue Against Cold and Potentially Other Metabolic Stresses and Physical Damages

Researchers at the National Eye Institute (NEI) have discovered an invention describing a composition and method(s) of using such composition for preserving viability of cells, tissues, or organs at a low temperature (around 4ºC). Current cold storage solutions or methods for cells, tissues, and organs are suboptimal due to irreversible damage to cold-sensitive tissue or organ transplants that need a longer term of storage for facilitating clinical practices.

Mouse Embryo Culture Chamber and Imaging System and Methods of Use

The culture of mouse embryos ex utero and continuous monitoring and imaging of embryos as they develop have applications in drug testing, genetic studies, and basic research on embryonic development. However, the embryo culture systems currently available for post-implantation embryos include rolling bottle culture systems, which do not permit imaging of the developing embryos and do not support the long-term survival and development of embryos ex utero.

Induced Pluripotent Stem Cells Derived from Patients with CEP290-associated Ciliopathies and Unaffected Family Members

Approximately one-third of non-syndromic retinal dystrophies involve a defect in a ciliary protein. Non-syndromic retinal ciliopathies include retinitis pigmentosa, cone dystrophy, cone-rod dystrophy, macular dystrophy, and Leber-congenital amaurosis (LCA). Many CEP290-LCA patients also exhibit auditory and olfactory defects. Induced pluripotent stem cells (iPS) cells were derived from patients with LCA and unaffected relatives. 
The National Eye Institute (NEI) seeks research collaborations and/or licensees for the use of these iPS cells.