Development of a High-Throughput Screening Tool for RSV Inhibition Using Engineered RSV Expressing GFP and Luciferase Genes

The technology involves the genetic engineering of Respiratory Syncytial Virus (RSV) to express two additional genes, green fluorescent protein (GFP) and Renilla luciferase, from different positions within the viral genome. GFP serves as a visual marker for RSV infection, allowing researchers to monitor and track infected cells using fluorescence microscopy, while luciferase functions as a highly sensitive reporter gene that enables quantitative assessment of viral replication through enzymatic assays.

Enhanced GFP-Expressing Human Metapneumovirus (HMPV): A Versatile Tool for Virology Research and Antiviral Drug Screening

The technology involves genetically engineering Human Metapneumovirus (HMPV) to express enhanced green fluorescent protein (GFP), enabling the monitoring of virus infection and gene expression through GFP fluorescence. This system serves as a sensitive and versatile tool for virology research, antiviral drug screening, and diagnostic applications.

Optimizing RSV Infection Monitoring and High-Throughput Screening Through GFP Expression in the First-Gene Position of Respiratory Syncytial Virus (RSV) Strain A2

In this technology, researchers have engineered a modified version of Respiratory Syncytial Virus (RSV) strain A2 using reverse genetics to incorporate green fluorescent protein (GFP) into the first-gene position. This genetic modification allows for the efficient monitoring of RSV infection and the screening of potential chemical inhibitors. The GFP expression can be easily detected through fluorescence microscopy in live or fixed cells, providing a sensitive tool for both research and drug discovery.

Advancing VZV Antibody Detection: A High-Throughput LIPS Assay for Varicella Vaccine Recipients

The technology described is a sophisticated and high-throughput luciferase immunoprecipitation system (LIPS) assay designed to detect antibodies specific to Varicella-zoster virus (VZV) glycoprotein E (gE). By transfecting cells with VZV protein-Renilla luciferase fusion protein constructs and subsequently performing immunoprecipitations with protein A/G beads, this innovative assay enables the quantitative measurement of VZV gE antibody levels in blood serum samples.

Advancements in Postexposure Prophylaxis: Evaluating High-Potency Rabies-Neutralizing Monoclonal Antibodies

This technology represents a significant advancement in the field of rabies prevention, focusing on the development of highly potent rabies-neutralizing monoclonal antibodies (mAbs) for use in postexposure prophylaxis (PEP). With two mAbs, F2 and G5a, displaying exceptional neutralizing titers of 1154 and 3462 International Units (IUs) per milligram, respectively, these antibodies have the potential to offer enhanced protection against rabies when administered alongside rabies vaccines.

Bispecific Antibody Targeting Anthrax Toxins and Capsule for Enhanced Biodefense

The technology focuses on the development of a tetravalent bispecific antibody effective against Bacillus anthracis, the bacterium responsible for anthrax. This antibody combines the specificities of two monoclonal antibodies (mAbs): one targeting anthrax protective antigen (PA) and the other targeting the bacterial capsule. The anti-PA mAb shows potent toxin-neutralizing activity, while the anti-capsule mAb efficiently kills anthrax bacteria.

A Key Advancement for Human Norovirus Research and Reverse Genetics

The HEK293T/T7 cell line is a novel development in virology research, particularly for studying human noroviruses. This cell line expresses the T7 RNA polymerase, a key enzyme used in reverse genetics systems. Unlike existing technologies, the HEK293T/T7 cell line offers the unique advantage of being able to produce functional T7 RNA polymerase, which is essential for driving transcription from T7 promoters.

A Fundamental Tool for Efficient Recovery of RNA Viruses through Reverse Genetics

BSR T7/5 cells represent a foundational advancement in virology, offering a robust platform for the recovery of RNA viruses via reverse genetics. Established over 20 years ago, these cells have proven instrumental in the recovery of a wide array of RNA viruses, particularly those belonging to the mononegavirales order.

Derivation of a >25 million-year-old Adeno-associated Virus Coat Protein Sequence for Gene Transfer Studies

This technology includes a novel capsid protein for recombinant adeno-associated virus (AAV)-mediated gene transfer evaluation. We have identified a "fossilized" endogenous AAV sequence element (referred to as mAAV-EVE) within the germline of an ancient lineage of Australian marsupials and have cloned and sequenced mAAV-EVE orthologs from at least fifteen lineage-specific taxa.

High Density Lipoprotein Targeting Protease Inhibitor Peptide for the Treatment of Alpha-1-antitrypsin (A1AT) Deficiency

This technology includes a novel concept and design for a lipoprotein targeting protease inhibitor for the treatment of Alpha-1-antitrypsin (A1AT) deficiency. A1AT deficiency occurs in about 1 in 2500 individuals in the United States and Europe, and people with this condition develop severe liver disease and emphysema/chronic obstructive pulmonary disease (COPD). Current treatment involves intravenous infusion of purified human A1AT protein, which is very expensive and only modestly effective.