T-Cell Immunotherapy that Targets Aggressive Epithelial Tumors

Metastatic cancers cause up to 90% of cancer deaths, yet few treatment options exist for patients with metastatic disease. Adoptive transfer of T cells that express tumor-reactive T-cell receptors (TCRs) has been shown to mediate regression of metastatic cancers in some patients. Unfortunately, identification of antigens expressed solely by cancer cells and not normal tissues has been a major challenge for the development of T-cell based immunotherapies. Thus, it is essential to find novel target antigens differentially expressed in cancer versus normal tissues.

Using Artificial Intelligence To Diagnose Uveitis

Summary: 
The National Eye Institute seeks research co-development partners and/or licensees for a deep learning algorithm that can identify retinal vasculitis using color fundus images.

Description of Technology: 
Uveitis is caused by inflammation in the eye that can cause pain and reduce vision. The rate of uveitis in the United States is 1 in every 200 people with eye-related irritation. Permanent symptoms such as vision loss can occur if untreated. Therefore, early detection is crucial. 

Henipavirus Vaccine

Henipaviruses are RNA viruses containing two high consequence human pathogens: Nipah virus (NiV) and Hendra virus (HeV). Both NiV and HeV infection in humans can result in severe respiratory disease and/or severe neurological manifestations, with mortality rates as high as 80%. There are currently no FDA-approved vaccines or therapeutics, and both NiV and HeV are considered dangerous emerging human pathogens with pandemic potential.

Vitamin C renal leak as a clinical diagnostic tool in the detection, monitoring, and management of acute and chronic diseases

This technology includes a clinical diagnostic tool for measuring vitamin C elimination by human kidneys that can be used for detecting, monitoring, and managing acute and chronic diseases. Findings revealed significant associations between vitamin C renal leak status and clinical variables affecting renal function and blood glucose. The technology uses vitamin C depletion-repletion kinetics and pharmacokinetic models to establish a physiological vitamin C renal threshold.

Rescue of AAV Production by shRNA Co-transfection

Recombinant adeno-associated virus (rAAV) vectors are proving to be a valid, safe and efficient gene transfer system for clinical applications. As most vectors utilize constitutive promoters, this results in transgene expression in the producer cell. Some of these transgene products can induce proapoptotic, cytostatic or other unknown effects that interfere with producer cell function. Therefore, this reduces the viral vector yield and is a major limitation when trying to characterize poorly described genes.

Locally Delivered Alkaline Phosphatase for Treatment of Periodontal Disease

This technology includes a product for local delivery of alkaline phosphatase for the treatment of periodontal disease. Our laboratory has discovered that factors regulating phosphate metabolism and specifically the appropriate balance between phosphate (Pi) and pyrophosphate (PPi) at local sites are needed for formation (development), maintenance and regeneration of the tooth root surface (cementum), periodontal ligament (PDL) and surrounding alveolar bone, i.e., the periodontal apparatus.

Enhanced Immune Response With Stabilized Norovirus VLPs: A Next-Generation Vaccine Approach

This technology includes a novel advancement in developing vaccines targeting norovirus, tailored specifically for a more robust and effective response. It centers around an improved version of Virus-Like Particles (VLPs) uniquely engineered for greater stability and efficacy. These enhanced VLPs are designed to remain intact even when faced with the body's immune responses, overcoming a key limitation of previous vaccine designs.