Novel Small Molecule Inhibitors for the Treatment of Huntington’s Disease

This technology is a collection of small molecules screened for their ability to prevent or reduce the cytotoxic effects of the protein, Huntingtin. Huntington's disease is a neurodegenerative disorder due to a dominantly acting expansion of a CAG trinucleotide repeat in exon 1 of the Huntington (HTT) gene resulting in production of the altered (mutant) protein Huntingtin, which has a long chain of polyglutamine (poly Q) attached to the exon 1 encoded protein sequence.

Mouse Model and Derived Cells That Hypersecrete Leukemia Inhibitory Factor (LIF)

Embryonic stem cells (ESCs) are pluripotent cells that can be cultured indefinitely, and maintain their capability to differentiate into all cell lineages. To maintain these cells as well as various types of related induced stem cells and progenitor cells in culture, Mouse Embryonic Fibroblasts (MEFs) are routinely used as feeder cells, largely to serve as a source of Leukemia Inhibitory Factor (LIF). ESCs can also be cultured without feeders if the medium is supplemented with recombinant LIF and other factors.

An In-Vitro Cell System Useful For Identification of RORgamma Antagonists

The retinoid-related orphan receptors alpha, beta and gamma (RORalpha, beta and gamma , also referred to as NR1F1, 2 and 3, respectively) comprise a distinct subfamily of nuclear receptors. Study of ROR-deficient mice has implicated RORs in the regulation of a number of biological processes and revealed potential roles for these proteins in several pathologies. NIH investigators have developed an in-vitro system using CHO cells stably expressing a TET-On expression vector regulating RORgamma and a RORE-Luciferase reporter.

Quantitative Measurement of Syndesmophytes in Ankylosing Spondylitis Using Computed Tomography (CT)

Syndesmophyte (abnormal bone) growth in the spine is a hallmark of Ankylosing Spondylitis, a type of inflammatory arthritis. Syndesmophyte growth is currently monitored using semi-quantitative scoring of radiographs, but radiographs consider only a small part of the vertebra, and the method is subject to reader error. Because syndesmophytes grow slowly, radiographs also lack sensitivity. The invention provides a method to measure syndesmophytes using data from computed tomography scans of the lumbar spine.

An Automated Method for Precise Measurement of Vertebral Body Height and Intervertebral Disk Height Using Computed Tomography

Vertebral fractures due to osteoporosis result in loss of vertebral height. Degenerative disk disease in the spine results in loss of disk height. Currently, radiography and magnetic resonance imaging are used to assess vertebral and disk height, and measurements are done manually. The present invention offers improved method to measure vertebral and disk heights. The invention provides computer algorithm that substantially automates the task, and uses computed tomography. The advantage of computed tomography over radiography is that of 3D imaging over 2D imaging.

Methods of Treating Giardiasis Using FDA-Approved Compounds

This technology includes a group of at least twenty-nine, diverse, commercially available compounds that are newly identified for activity against Giardia lamblia parasites. At least six of the candidate compounds, Bortezomib, Decitabine, Hydroxocobalamin, Amlexanox, Idarubicin, and Auranofin have preexisting FDA approval for human use for other (non-Giardia) conditions. Another three compounds, Fumagillin, Nitarsone and Carbadox have preexisting approval for veterinary use for non-Giardia conditions.

TL1A Transgenic Mice for the Study of Inflammatory Bowel Disease (IBD) and Allergic-Type Immune Responses

TL1A is a TNF family cytokine that co-stimulates T-cell proliferation and cytokine production through its interactions with the TNF family receptor DR3. TL1A-DR3 interactions have been shown to be important for the development of autoimmune inflammatory diseases, including inflammatory bowel disease (IBD).

A Novel Optomechanical Module that Enables a Conventional inverted Microscope to Provide Selective Plane Illumination Microscopy (iSPIM)

The invention describes an optomechanical module that, when engaged with a conventional inverted microscope, provides selective plane illumination microscopy (iSPIM). The module is coupled to the translational base of the microscope whereby a SPIM excitation objective is engaged to one portion of the mount body, and a SPIM detection objective (having a longitudinal axis perpendicular to that of the excitation objective) is engaged to another portion of the mount body.

Human Phospho-Serine134 Glucocorticoid Receptor Polyclonal Antibody: Useful for the Characterization of Glucocorticoid Signaling Processes, e.g., in Cancer and Inflammation

The glucocorticoid receptor (GR) functions as a hormone-dependent transcription factor that is involved in the maintenance of basal and stress-related homeostasis. Serine 134 is a newly discovered phosphorylation target on the human glucocorticoid receptor that becomes phosphorylated during stress-activating conditions such as ultraviolet irradiation, nutrient starvation, and oxidative stress. The inventors have developed a rabbit polyclonal antibody that specifically recognizes the Ser 134 phosphorylated form of the human glucocorticoid receptor.

Protease Deficient Bacillus anthracis with Improved Recombinant Protein Yield Capabilities

Species of Bacillus, such as Bacillus anthracis, Bacillus cereus, and Bacillus subtilis, are attractive microorganisms for recombinant protein production in view of their fast growth rate, high yield, and ability to secrete produced products directly into the medium. Bacillus anthracis is also attractive in view of its ability to produce anthrax toxin and ability to fold proteins correctly. This application claims a B. anthracis strain in which more than one secreted protease is inactivated by genetic modification.