Exposure and Activity Detection Assays for Anthrax Lethal Factor and Lethal Toxin

This CDC developed invention identifies an assay for extremely fast and sensitive detection of Bacillus anthracis lethal toxin (LTx), the toxin responsible for the lethal effects of anthrax infection. This assay has already been successfully tested in animals and will allow for early detection of anthrax exposure and screening of lethal factors to monitor anthrax toxicity, for example for vaccine trial candidates.

Photoinduced Electron Transfer Fluorescent Primer for Nucleic Acid Amplification

CDC scientists have developed a rapid and cost-efficient method for generating fluorescently labeled primers for PCR and real-time PCR. At present, fluorescent primers are useful for detecting and identifying microbes and specific nucleic acid sequences, amplifying nucleic acids for pyro-sequencing, determining the levels of gene expression, and many other uses. However, problems exist with current techniques used to create fluorescent primers. For one, labeling is not one hundred percent efficient, leading to inaccurate results.

Virus Replicon Particles as Rift Valley Fever Vaccines

Rift Valley fever (RVF) virus primarily infects animals but also has the capacity to infect humans. The disease causes abortion and death among RVF-infected livestock, resulting in substantial economic loss to people living in many parts of Africa and Arabian Peninsula. Currently, there is no commercial vaccine for RVF. CDC scientists have developed a RVF virus replicon particle (VRP) vaccine candidate.

Molecular Detection and Viral-Load Quantification for HIV-1 Groups M, N and O, and Simian Immunodeficiency Virus-cpz (SIVcpz)

This invention provides materials, methods, and assays for detecting HIV-1 groups M and O and optionally HIV-1 group N and simian immunodeficiency virus-cpz (SIV-cpz). Specific nucleic acid primers for hybridization, amplification, and detection of HIV-1 are also provided for. The nucleic acid amplification assays can detect small concentrations of HIV-1 and are also useful for quantitative examinations of viral load concentrations within biological samples.

Fluorescent Primer(s) Creation for Nucleic Acid Detection and Amplification

CDC researchers have developed technology that consists of a simple and inexpensive technique for creating fluorescent labeled primers for nucleic acid amplification. Fluorescent chemical-labeled probes and primers are extensively used in clinical and research laboratories for rapid, real-time detection and identification of microbes and genetic sequences. During nucleic acid amplification, the "UniFluor" primer is incorporated into newly synthesized double stranded DNA.

Novel One-Well Limiting-Antigen Avidity Enzyme Immunoassay to Detect Recent HIV-1 Infection Using a Multi-subtype Recombinant Protein

This CDC developed Limiting-Antigen avidity Enzyme Immunoassay (LAg-avidity-EIA) provides an easy way to measure increasing binding strength (avidity) of HIV antibodies as part of maturation HIV antibodies after seroconversion, providing a method to distinguish early-stage from long-term HIV-1 infection. Surveillance of HIV-1 provides information on prevalence rates of the disease, but determination of new infection rates (HIV-1 incidence) is difficult to deduce. Longitudinal follow up is expensive and can be biased.

Simple, Rapid, and Sensitive Real-Time PCR Assays for Detecting Drug Resistance of HIV

This novel assay features real-time PCR reagents and methods for detecting drug-resistance related mutations in HIV, for newly diagnosed patients and those individuals currently receiving antiretroviral therapies. As the use of antiretroviral compounds to treat HIV infection proliferates, viruses adapt and evolve mutations limiting the efficacy of these drugs and disrupting the success of treatment.

Recombinant Nucleic-Acid Based Flavivirus Nucleic Acids for Development of Vaccines and/or Sero-diagnostics

CDC scientists have developed recombinant flavivirus nucleic acids for the generation of broad protective immunity against flaviviruses, as well as the development of sensitive serologic diagnostic tools. Mosquito borne viral encephalitis is often caused by a flavivirus, such as Japanese encephalitis virus, dengue virus or West Nile virus. Infection by these pathogens is often lethal to both humans and animals.

Vaccine Attenuation via Deoptimization of Synonymous Codons

Research scientists at CDC have developed compositions and methods that can be used to develop attenuated vaccines having well-defined levels of replicative fitness and enhanced genetic stabilities. Infections by intracellular pathogens, such as viruses, bacteria, and parasites, are cleared in most cases after activation of specific T-cell immune responses that recognize foreign antigens and eliminate infected cells. Vaccines against those infectious organisms traditionally have been developed by administration of whole live attenuated or inactivated microorganisms.

Physiologic Sampling Pump Capable of Rapidly Adapting to User Breathing Rate

This CDC developed physiologic sampling pump (PSP) overcomes shortcomings of previous devices by the use of calibrated valves in conjunction with a constant speed pump. This novel approach obviates typical PSP inertia that inherently limits system response, functionality and accuracy. All prior PSP designs have attempted to follow a user's breathing pattern by changing pump speed, thereby altering sampling rate. In that approach, pump inertia will limit system response and function due to the time required to adjust speed.