Immortalized Rhesus macaque Bcl-6/Bcl-xL Stable B Cell Lines as Tools for HIV Antibody Discovery

Scientists at NIAID have developed two immortalized stable B cell lines from rhesus macaques that can have value as research tools for the discovery of neutralizing antibodies of simian origin against HIV and that may have value in the development of an HIV vaccine. These B cell lines encode human Bcl-6 and Bcl-xL proteins, which are major regulators of apoptosis. These B cell lines are derived from the lymph node of a rhesus macaque (RM) that was infected with SHIV.CH505.

Dual-Germline Antibody Engager Chimeric HIV–1 Immunogens

Despite four decades of intensive research, a safe and effective HIV-1 vaccine remains elusive due to the extreme difficulty in eliciting broadly neutralizing antibodies (bNAbs), which recognize and block HIV-1 from entering healthy cells. Only rare natural HIV-1 envelopes (Envs) promote the activation and expansion of naive B cells expressing unmutated germline antibodies of various bNAb lineages, but they typically do so for a single lineage for the same neutralization site.

Enhanced Immunogenicity Against HIV-1 Using a DNA-prime Poxvirus Vaccination

Researchers at the National Cancer Institute (NCI) have developed a method of stimulating an immune response in humans at risk for infection by, or already infected with, an Human Immunodeficiency Virus (HIV)-1 retrovirus. This method utilizes deoxyribonucleic acid (DNA) vaccines to stimulate CD8+ T cell immune responses. The DNA vaccine encodes antigens known to be effective against retroviruses, such as HIV-1gag, gp120, nefCTL, and proCTL. The same antigens are also expressed by the pox virus vaccine, which elicits an increased immune response when combined with the DNA vaccine.

Cancer Vaccines against POTE for Treating Solid Tumors

POTE is a novel tumor antigen expressed in a variety of cancers including breast, prostate, colon, lung, ovary, and pancreas cancers.  POTE has limited expression in normal tissues and therefore a specific target for cancer treatments, including immunotherapy.  The researchers seek statements of capability or interest from parties interested in collaborative research to further develop, evaluate, or commercialize immunogenic peptides. 

High Efficacy Vaccine and Microbicide Combination For Use Against HIV

Human immunodeficiency virus (HIV) remains a major global health challenge despite the advancement made in development of effective antiretrovirals (ARVs). ARVs are effective at limiting replication and spread of the virus, and progression to acquired immuno-deficiency syndrome (AIDS). However, ARVs often lead to emergence of drug-resistant virus strains insensitive to treatment and with toxic effects following long-term usage.

Immunogens, Compositions, and Methods for the Treatment of Dyslipidemia

This technology includes a novel vaccine for forming autoantibodies against apoC-III, a plasma enzyme that inhibits lipolysis. The vaccine can possibly be used to treat patients with high triglycerides and are at risk for pancreatitis and cardiovascular disease. This disclosure describes an ApoC3 immunogen that includes an antigenicApoC3 peptide linked to a bacteriophage virus-like-particle (VLP) immunogenic carrier.

Enhanced Immune Response With Stabilized Norovirus VLPs: A Next-Generation Vaccine Approach

This technology includes a novel advancement in developing vaccines targeting norovirus, tailored specifically for a more robust and effective response. It centers around an improved version of Virus-Like Particles (VLPs) uniquely engineered for greater stability and efficacy. These enhanced VLPs are designed to remain intact even when faced with the body's immune responses, overcoming a key limitation of previous vaccine designs.

Novel Regulatory B cells for Treatment of Cancer and Autoimmune Disease

The manner by which cancers evade the immune response is not well-understood. What is known is that the manner is an active process that regulates immune responses employing at least two types of suppressive cells, myeloid-derived suppressive cells and regulatory T cells (Tregs), a key subset of CD4+ T cells that controls peripheral tolerance to self- and allo-antigens. Tregs are considered to play a key role in the escape of cancer cells from anti-tumor effector T cells.