ARH3, a Therapeutic Target for Cancer, Ischemia, and Inflammation

ADP-ribosylation is important in many cellular processes, including DNA replication and repair, maintenance of genomic stability, telomere dynamics, cell differentiation and proliferation, and necrosis and apoptosis. Poly-ADP-ribose is important in a number of critical physiological processes such as DNA repair, cellular differentiation, and carcinogenesis. Until recently, only one human enzyme, PARG, had been identified that degrades the ADP-ribose polymer.

A Varicella-Zoster Virus Mutant that is Markedly Impaired for Latent Infection Available for the Development of Shingles Vaccines and Diagnostics

Reactivation of latent Varicella-Zoster virus (VZV) infection is the cause of shingles, which is prominent in adults over the age of 60 and individuals who have compromised immune systems, due to HIV infection, cancer treatment and/or transplant. Shingles is a worldwide health concern that affects approximately 600,000 Americans each year. The incidence of shingles is also high in Europe, South America, and India; the latter having an estimated two million individuals affected, yearly.

Codon Optimized Genes for Subunit Vaccines

Available for licensing from the NIH are gene constructs that express immunogenic proteins based on viral genes that have been optimized for expression in mammalian cells. Using vaccine vectors expressing respiratory syncytial virus (RSV) proteins from the optimized genes, this technology was shown to result in a potent RSV-specific cellular immune responses with favorable phenotypic patterns. This technology was shown to generate a superior immune (both humoral and cellular) response when utilized as part of a heterologous vector prime-boost regimen.

Development of Dengue Virus Type 3 Vaccine Candidates

The disease burden associated with dengue virus infection has increased over the past several decades in the tropical and semi-tropical regions of the world, where over 2 billion people live at risk of dengue infection. Annually, there are an estimated fifty (50) to one hundred (100) million cases of dengue fever, making development of an effective vaccine a priority. In addition, there is a need for a "travelers vaccine" to protect those visiting dengue virus endemic areas, similar in scope to other currently available "travelers vaccines", such as hepatitis A vaccine.

Monoclonal Antibodies that Neutralize <i>B. anthracis</i> Protective Antigen (PA), Lethal Factor (LF) and Edema Factor (EF)

Anthrax, whether resulting from natural or bioterrorist-associated exposure, is a constant threat to human health. The lethality of anthrax is primarily the result of the effects of anthrax toxin, which has 3 components: a receptor-binding protein known as "protective antigen" (PA) and 2 catalytic proteins known as "lethal factor" (LF) and "edema factor" (EF). Although production of an efficient anthrax vaccine is an ultimate goal, the benefits of vaccination can be expected only if a large proportion of the population at risk is immunized.

Monoclonal Antibodies Against Orthopoxviruses

Concerns that variola (smallpox) virus might be used as a biological weapon have led to the recommendation of widespread vaccination with vaccinia virus. While vaccination is generally safe and effective for prevention of smallpox, it is well documented that various adverse reactions in individuals have been caused by vaccination with existing licensed vaccines. Vaccinia immune globulin (VIG) prepared from vaccinated humans has historically been used to treat adverse reactions arising from vaccinia immunization.

Targeting Poly-Gamma-Glutamic Acid to Treat Staphylococcus Epidermidis and Related Infections

Over the past decade, Staphylococcus epidermidis has become the most prevalent pathogen involved in nosocomial infections. Usually an innocuous commensal microorganism on human skin, this member of the coagulase-negative group of staphylococci can cause severe infection after penetration of the epidermal protective barriers of the human body. In the U.S. alone, S. epidermidis infections on in-dwelling medical devices, which represent the main type of infection with S. epidermidis, cost the public health system approximately $1 billion per year. Importantly, S.

Chlamydia Vaccine

Chlamydia trachomatis is an obligate intracellular bacterial pathogen that colonizes and infects oculogenital mucosal surfaces. The organism exists as multiple serovariants that infect millions of people worldwide. Ocular infections cause trachoma, a chronic follicular conjunctivitis that results in scarring and blindness. The World Health Organization estimates that 300–500 million people are afflicted by trachoma, making it the most prevalent form of infectious preventable blindness.

Monoclonal Antibodies Against Dengue and Other Viruses With Deletion in Fc Region

The four dengue virus (DENV) serotypes (DENV-1 to DENV-4) are the most important arthropod-borne flaviviruses in terms of morbidity and geographic distribution. Up to 100 million DENV infections occur every year, mostly in tropical and subtropical areas where vector mosquitoes are abundant. Infection with any of the DENV serotypes may be asymptomatic or may lead to classic dengue fever or more severe dengue hemorrhagic fever (DHF) and dengue shock syndrome (DSS), which are increasingly common in the dengue endemic areas.

Novel Roles of a DNA Repair Protein, DNA-PKcs, in Obesity, Neurological Function, and Aging

The catalytic subunit of the DNA-dependent protein kinase complex (DNA-PKcs) has been shown to be important in DNA repair and VDJ recombination in lymphocytes. The inventors have discovered that DNA-PKcs also plays novel, important roles in energy regulation and neurological function. The inventors observed that mature DNA-PKcs-deficient mice (also known as SCID mice) have a lower proportion of fat, resist obesity, and have significantly greater physical endurance than wild-type control mice, particularly with increasing age.