Discovery of potent and selective D3 antagonist with alleviated hERG liability and optimized pharmacokinetic properties

One of the most challenging hurdles in creating safe and effective new medicines for many diseases is finding drugs that are effective without causing off-target cardiac issues, such as cardiac arrythmias. In collaboration with NIDA, scientists at NCATS have developed a series of novel and highly specific dopamine D3 receptor agonists and antagonists that have potential to target and treat Parkinson’s disease, Schizophrenia, Depression, and substance-use disorders including opioid addiction.

Oral Iron-Chelator Therapy for Treating Developmental Stuttering

This technology discloses the use of small-molecule iron chelators—drugs that bind and remove excess iron—for the oral treatment of developmental stuttering in children and adults. Mouse models carrying human stuttering mutations show both elevated striatal iron and impaired vocalization; daily low-dose deferiprone reverses these speech-like deficits while normalizing brain-iron MRI signals.

Interleukin-27 Producing B-Cell Population and Uses Thereof

Summary: 
The National Eye Institute (NEI) seeks research co-development partners and/or licensees to advance the production and uses of interleukin-27 (IL-27) producing B-regulatory cell (i27-Breg) therapy for immune related autoimmune disorders. These disorders include but are not limited, to age-related macular degeneration (AMD), graft-versus-host disease (GVHD), multiple sclerosis (MS) and transplant rejection.

Treatment of Periodontal Disease via ENPPI Inhibition

This technology focuses on enhancing cementum production, a key component in treating periodontal regression. The method involves inhibiting ectonucleotide pyrophosphatase phosphodiesterases (ENPP1), enzymes that play a significant role in mineralization processes. Pyrophosphate (PPi) is known to impede the growth of hydroxyapatite crystals, essential for mineralization. ENPP1 catalyzes the hydrolysis of ATP, generating PPi, which then hinders mineralization.

Personalized Tumor Vaccine and Use Thereof for Cancer Immunotherapy

Immune checkpoint inhibitors (ICIs) vastly improved the outcome of various advanced cancers; however, many are less likely to respond to single-agent ICI. Tumors with low T-cell infiltration are "immunologically cold" and less likely to respond to single-agent ICI therapy. This diminished response is presumably due to the lack of neoantigens necessary to activate an adaptive immune response. On the other hand, an "immunologically hot" tumor with high T-cell infiltration has an active anti-tumor immune response following ICI treatment.