: Single Domain Antibodies targeting HPV E6/E7 Oncogenic Peptide/MHC complexes

Human papillomavirus (HPV) has been linked to many cancers including cervix, uterine, anus, vulva, vagina, and penis. Although HPV vaccines exist to prevent HPV-associated cancers, there are still more than 5,000 deaths caused by HPV-associated cancers each year in the US and cervical cancer continues to be the second leading cause of cancer death in women ages 20 to 39.

High Affinity Monoclonal Antibodies Targeting Glypican-2 for Treating Childhood Cancers

Neuroblastoma is a rare pediatric cancer with approximately 1,000 new cases arising annually. Current therapies have a less than forty-five percent (45%), three-year survival rate which demonstrate a need for a more effective treatment against this disease. Glypican-2 (GPC2) is a cell surface protein that is preferentially expressed in pediatric cancers including neuroblastoma, which makes GPC2 an attractive candidate for targeted therapy. 
 

Fully-human Heavy-chain-only Anti-B-cell Maturation Antigen (BCMA) Chimeric Antigen Receptors (CARs)

Immortalization of plasma cells leads to plasma cell malignancy diseases such as multiple myeloma (MM). B-cell maturation antigen (BCMA) is a protein that is preferentially expressed by malignant and normal B cells and plasma cells, butnot on other cells in the body. This limited expression profile suggests that BCMA is a promising target for anticancer therapeutics for cancers in which there is excess production of plasma cells and B cells. 

Human Monoclonal Antibodies Targeting Glypican-2 in Neuroblastoma

Neuroblastoma is a rare pediatric cancer that affects one in every hundred thousand children under the age of fifteen in the United States. Current standards of care  are chemotherapy and surgery, followed by stem-cell treatments, radiation and anti-ganglioside antibody therapy, which yield an average three-year survival rate of 10-45%. This demonstrates a need for more effective therapies.

High Affinity Nanobodies Targeting B7-H3 (CD276) for Treating Solid Tumors

CD276 (also called B7-H3) is a pan-cancer antigen expressed in multiple solid tumors and an emerging cancer target. CD276 protein is overexpressed in pancreatic cancer, prostate cancer, breast cancer, colon cancer, lung cancer, and brain tumors (such as neuroblastoma) – making it an ideal target for cancer therapy. 

Investigators at the National Cancer Institute (NCI) have isolated a panel of anti-CD276 single domain antibodies (also known as nanobodies) from novel camel and rabbit single domain (VHH) libraries by phage display. 

Anti-Glypican 2 Chimeric Antigen Receptor (CAR) Containing CD28 Hinge And Transmembrane Domains For Treating Neuroblastoma

Neuroblastomas are the most common extracranial solid tumors in pediatric patients, with 700-800 new cases annually in the United States. Metastatic neuroblastomas have a five-year survival rate of 50% and account for 15% of all pediatric cancer deaths. As such, more effective treatments against high-risk neuroblastomas are urgently needed.

Chimeric Antigen Receptors (CAR)-T Cells that Target the Non-Shed Portion of Mesothelin as a Therapeutic Agent

Mesothelin (MSLN) is an excellent target for antibody-based therapies of cancer because of its high expression in many malignancies but lack of expression on essential normal tissues. Unfortunately, a large fragment of MSLN is shed from cancer cells, causing the currently available anti-MSLN antibodies (and immunoconjugates thereof) which bind to the shed portion of MSLN to quickly lose their therapeutic effectiveness over time. Indeed, the shed portion of MSLN can act as a decoy for these antibodies, further limiting them from reaching and destroying tumor cells.

Single-domain monoclonal antibodies for the treatment of hepatocellular carcinoma

The National Cancer Institute seeks parties to license human monoclonal antibodies and immunoconjugates and co-develop, evaluate, and/or commercialize large-scale antibody production and hepatocellular carcinoma (HCC) xenograft mouse models. An advantage of these monoclonal antibodies as a potential therapeutic is their specificity, which would reduce deleterious side-effects. HCC is the most common form of liver cancer, and is among the more deadly cancers in the world. There is a need for new treatments that can be successfully applied to a large population of patients.

Single Domain Antibodies Targeting the S2 Subunit of SARS-CoV-2 Spike Protein

The COVID-19 pandemic is a worldwide public health crisis with over 100 million confirmed cases and 2.4 million deaths as of February 2021. COVID-19 is caused by a novel coronavirus called SARS-CoV-2. Almost all the neutralizing antibodies targeting SARS-CoV-2 that are in development recognize the receptor binding domain (RBD) on the spike (S) protein. Blocking the interaction of RBD and the ACE2 receptor on human cells is the first of the two critical steps for neutralization of the virus.