Nucleoside Agonists of Adenosine Receptors as Cardio- and Cerebroprotective Agents

This technology includes a compound for use as a selective agonist of the A1 adenosine receptor (AR) for therapeutic hypothermia and other conditions. We have examined various synthesized nucleosides in a model of mouse hypothermia, in conjunction with AR knockout mice, to characterize the biological profiles. In trying to identify novel highly selective A1AR agonists that have superior in vivo activities, we have adapted a means of rigidifying the ribose moiety of adenosine in the form of a bicyclic (N)-methanocarba ring.

Ionophores as Treatment for Sickle Cell Disease

This technology includes a method using ionophores to reduce sickling in patients with sickle cell disease. Sickle cell disease is caused by polymerization of a hemoglobin mutant, and the only approved treatment acts by replacing sickle hemoglobin with fetal hemoglobin, thereby increasing the delay time prior to polymerization. This drug is only partially successful because it does not induce fetal hemoglobin synthesis in all cells.

Synthetic Biotin-streptavidin Replacement for Use in the Development of Clinical Diagnostics

This technology includes an alternative synthetic biotin-streptavidin replacement system for use in the development of clinical diagnostics. Peptide nucleic acids (PNA) when functionalized onto the surface of microspheres are capable of targeting short RNA targets from solutions. However, when the target nucleic acid becomes longer and complicated in structure, the PNA no longer efficiently binds due to steric hindrance from the microspheres and/or slow hybridization kinetics of larger nucleic acid targets.

Structure-Based Design of A3 Adenosine Receptor-Selective 2-Arylethynyl (N)-methanocarba Nucleosides for Diagnostic and Therapeutic Uses

This technology includes compounds that are selective agonists of the A3 receptor for the treatment of various disorders such as cancer and autoinflammatory diseases. Structurally, these compounds extend the class of (N)-methanocarba derivatives that are selective agonists of the A3 receptor.

HEK293 Cell Line Deficient in Functional CASP8AP2 for Improved Production Efficiency

This technology includes an engineered HEK293 cell line expressing firefly luciferase by functionally knocking out the caspase 8 associated protein 2 (CASP8AP2) gene using CRIPSR/Cas9 genome editing for improved production efficiency. This engineered cell line possesses superior recombinant protein expression capabilities than the parental cell line from which it was created, while proliferating and metabolizing carbon at a comparable rate. Improved recombinant protein expression is mediated by growth arrest at the G0/G1 phase.

Sphingosine Kinase 1 (Sphk1) Knockout Mouse for Utilization in Developmental Biology

This technology includes a sphingosine kinase 1 (Sphk1) knockout mouse model for use in developmental biology research. Sphingosine-1-phosphate (S1P) is synthesized from sphingosine and ATP by the action of sphingosine kinase, and activates cell signaling. Two sphingosine kinases, SPHK1 and SPHK2, have been identified. To study the physiological function of SPHK1, Sphki null mice were generated. The mice were viable, fertile, with no obvious abnormalities. Total SPHK activity in most tissues was substantially reduced, suggesting the presence of other sphingosine kinases.

A Novel Oxygen-induced Expression Vector for Production of Recombinant Proteins in Escherichia Coli

This technology includes a new method to induce recombinant protein expression in E. coli through the activating the SoxS promoter by molecular oxygen. We previously discovered that the SoxRS regulon of E. coli is activated in response to elevated dissolved oxygen concentration mainly to protect the bacteria from possible oxygen damage. We hypothesized that the 16-fold increase in the expression of this regulon make it possible candidate for inducing the expression of recombinant proteins.

Mouse Models for the Study of Gaucher Disease and Therapeutic Development

This technology includes mouse models for both mild and severe Gaucher disease. Gba-L444P and Gba-L444P A456P mice, respectively, carry common gene mutations for milder or severe Gaucher disease, a lysosomal storage disease. Gaucher Disease is caused by mutations in the lysosomal enzyme, glucocerebrosidase. Deficiency of enzyme activity leads to the accumulation of glucosylceramide in liver, spleen, bone, and in the most severe cases, the central nervous system.

Thyclotides for the Development of Clinical Diagnostics and Targeted Therapeutics

This technology includes a new class of oligomeric molecules called thyclotides for diagnostic and therapeutic development. Thyclotides is described where chiral tetrahydrofuran (THF) diamine units are linked together with alternating glycines, and nucleobases are attached to this backbone as sidechains. The thyclotide sequence consists of a series of nucleobases similar to that of a nucleic acid sequence. Thyclotides are easily synthesized and purified with excellent solubility in water. Thyclotide sequences bind to complementary DNA and RNA sequences with very strong affinity.

S1pr1 LoxP (S1p1 FM2Rip) Mouse Model for Developmental Biology

This technology includes a mouse model for S1 pr1 to be used in development biology research. Sphingosine-1-phosphate is a potent bioactive compound that activates a family of G-protein coupled receptors known as Edg or S1P receptors. Triggering these receptors on cells may have important effects related to inflammation, immunity, cancer, angio-genesis, cell proliferation, adhesion, cardiovascular function, nervous system function and injury responses.